Сети массового обслуживания и их применение. На практическом занятии рассмотрим этот путь и сравним результаты моделирования с теоретическим решением

Применение различных математических методов к формализации. Акцент на сложную систему - непредсказуемую. Носитель неопределенности является человек.

Характерным примером стохастических (случайные, вероятностные) задач являются модели систем массового обслуживания.

СМО имеют повсеместное распространение. Это телефонные сети, автозаправочные станции, предприятия бытового обслуживания, билетные кассы, торговые мероприятия и т.д.

С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди, с тем чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если такое имеется в блоке ожидания. Цикл функционирования СМО подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Примерами СМО могут служить:

    посты технического обслуживания автомобилей;

    посты ремонта автомобилей;

    аудиторские фирмы и т.д.

Основоположником теории массового обслуживания, в частности, теории очередей, является известный датский ученый А.К.Эрланг (1878-1929), который исследовал процессы обслуживания на телефонных станциях.

Системы, в которых имеют место процессы обслуживания, называют системами массового обслуживания (СМО).

Чтобы описать систему массового обслуживания, необходимо задать:

- входной поток заявок;

- дисциплину обслуживания;

- время обслуживания

- количество каналов обслуживания.

Входной поток требований (заявок) описывается путем выявления как вероятностного закона распределения моментов поступления требований в систему, так и количества требований в каждом поступлении.

При задании дисциплины обслуживания (ДО) необходимо описать правила постановки требований в очередь и обслуживания их в системе. При этом длина очереди может быть как ограниченной, так и неограниченной. В случае ограничений на длину очереди поступившая на вход СМО заявка получает отказ. Чаще всего используются ДО, определяемые следующими правилами:

первым пришел – первым обслуживаешься;

    пришел последним - обслуживаешься первым; (коробочка для теннисных шариков, стек в технике)

    случайный отбор заявок;

    отбор заявок по критерию приоритетности.

Время обслуживания заявки в СМО является случайной величиной. Наиболее распространенным законом распределения является экспоненциальный закон.  - скорость обслуживания. =количество заявок обслуживания/ед. времени.

Каналы обслуживания , могут быть расположены параллельно и последовательно. При последовательном расположении каналов каждая заявка проходит обслуживание на всех каналах последовательно. При параллельном расположении каналов обслуживание производится на всех каналах одновременно по мере их освобождения.

Обобщенная структура СМО представлена на рис.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности СМО, и эффективностью ее функционирования.

Проблемы проектирования СМО.

К задачам определения характеристик структуры СМО относятся задача выбора количества каналов обслуживания (базовых элементов {Ф i }), задача определения способа соединения каналов (множества элементов связей {Hj}), а также задача определения пропускной способности каналов.

1). Выбор структуры . Если каналы работают параллельно, то проблема выбора Str сводится к определению количества каналов в обслуживающей части исходя из условия обеспечения работоспособности СМО. (Если очередь не является бесконечно растущей).

Отметим, что при определении количества каналов системы, в случае их параллельного расположения, необходимо соблюдать условие работоспособности системы . Обозначим:  - среднее число заявок, поступающих в единицу времени, т.е. интенсивность входного потока;  - среднее число заявок, удовлетворяемых в единицу времени, т.е. интенсивность обслуживания; S - количество каналов обслуживания. Тогда условие работоспособности СМО запишется

или
. Выполнение этого условия позволяет вычислить нижнюю границу количества каналов.

В случае, если
, система не справляется с очередью. Очередь при этом растет безгранично.

2). Необходимо определить критерий эффективности функционирования СМО с учетом затрат на потери времени как со стороны заявок, так и со стороны обслуживающей части.

В качестве показателей эффективности функционирования СМО рассматриваются следующие три основные группы показателей:

1. Показатели эффективности использования СМО.

    Абсолютная пропускная способность СМО - среднее число заявок, которое может обслужить СМО в единицу времени.

    Относительная пропускная способность СМО – отношение среднего числа заявок, обслуживаемых СМО в единицу времени, к среднему числу поступивших заявок за это время.

    Средняя продолжительность периода занятости СМО.

    Коэффициент использования СМО - средняя доля времени, в течение которого СМО занята обслуживанием заявок.

2. Показатели качества обслуживания заявок.

    Среднее время ожидания заявки в очереди.

    Среднее время пребывания заявки в СМО.

    Вероятность отказа заявке в обслуживании без ожидания.

    Вероятность того, что поступившая заявка немедленно будет принята к обслуживанию.

    Закон распределения времени ожидания заявки в очереди.

    Закон распределения времени пребывания заявки в СМО.

    Среднее число заявок, находящихся в очереди.

    Среднее число заявок, находящихся в СМО.

3. Показатели эффективности функционирования пары «СМО - потребитель».

При выборе критерия эффективности функционирования СМО необходимо учесть двойственный подход к рассмотрению систем массового обслуживания. Например, работу универсама, как СМО, можно рассматривать с противоположных сторон. С одной, традиционно принятой, стороны покупатель, ожидающий свою очередь у кассы, представляет собой заявку на обслуживание, а кассир - канал обслуживания. С другой стороны, кассир, который ожидает покупателей, может быть рассмотрен в качестве заявки на обслуживание, а покупатель - обслуживающее устройство, способное удовлетворить заявку, т.е. подойти к кассе и прекратить вынужденный простой кассира. (традиционно – покупателей > чем кассиров, если кассиров > чем покупателей, они ждут покупателей).

С
учетом этого целесообразно минимизировать обе части СМО одновременно.

Применение такого двойственного подхода предполагает необходимость учета при формировании критерия эффективности не только перечисленных выше показателей в отдельности, но и одновременно нескольких показателей, отражающих интересы как обслуживающей, так и обслуживаемой подсистем СМО. Например, показано, что наиболее важным критерием эффективности в задачах массового обслуживания является суммарное время нахождения клиента в очереди, с одной стороны, и простоя каналов обслуживания - с другой.

Классификация систем массового обслуживания

1. По характеру обслуживания выделяют следующие виды СМО:

1.1. Системы с ожиданием или системы с очередью . Требования, поступившие в систему и не принятые немедленно к обслуживанию, накапливаются в очереди. Если каналы свободны, то заявка обслуживается. Если же все каналы заняты в момент поступления заявки, то очередная заявка будет обслужена после завершения обслуживания предыдущей. Такая система называется полнодоступной (с неограниченной очередью).

Существуют системы с автономным обслуживанием, когда обслуживание начинается в определенные моменты времени;

      Системы с ограниченной очередью . (ремонт в гараже)

      Системы с отказами . Все заявки, прибывшие в момент обслуживания заявки, получают отказ. (ГТС)

      Системы с групповым входным потоком и групповым обслуживанием . В таких системах заявки поступают группами в моменты времени, обслуживание также происходит группами.

2. По количеству каналов обслуживания СМО подразделяются на следующие группы.

Одноканальные СМО.

Многоканальные СМО . Обслуживание очередной заявки может начаться до окончания обслуживания предыдущей заявки. Каждый канал действует как самостоятельное обслуживающее устройство.

3. По кругу обслуживаемых объектов различают два вида.

Замкнутые СМО. Замкнутая система массового обслуживания - это система массового обслуживания, в которой обслуженные требования могут возвращаться в систему и вновь поступать на обслуживание. Примерами замкнутой СМО являются ремонтные мастерские, сберегательные банки.

Открытые СМО.

4. По количеству этапов обслуживания различают однофазные и многофазные СМО.

Однофазные СМО - это однородные системы, которые выполняют одну и ту же операцию обслуживания.

Многофазные СМО - это системы, в которых каналы обслуживания расположены последовательно и выполняют различные операции обслуживания. Примером многофазной СМО являются станции технического обслуживания автомобилей.

Приведенная классификация СМО является условной. На практике чаще всего СМО выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определенного момента, после чего система начинает работать как система с отказами.

ВНИМАНИЕ!!! Этот раздел будет состоять из нескольких страниц, остальные из которых в данный момент находится в стадии написания. Но уже написанная часть достаточно интересная, поэтому я считаю, что будет полезно уже сейчас сделать её доступной читателям

Давно-давно, когда мы были студентами, этот раздел математики у нас выпил немало студенческой крови. А между тем, этот раздел чрезвычайно интересный!

  • Моделирование СМО — для тех, кто уже всё знает.

Датский инженер Агнер Эрланг работал в телефонной компании и занялся в начале XX в. рассчётами, касающимися работы телефонной станции: какая доля попыток позвонить не будет успешной, т.к. заняты все линии, сколько нужно иметь линий связи, если абоненты могут дожидаться освобождения линии или если будут прекращать попытку. В технике фамилия датского инженера осталась в виде единицы измерения абонентской нагрузки Эрланг (Эрл ).

1 Эрл - это занятие одной телефонной линии в течение 1 часа.

Позже возник целый раздел математики - Теория Массового Обслуживания , который позволяет решать различные задачи, касающиеся далеко не только телефонии.


Я не ставлю себе целью написать целый учебник по ТМО. Такого роду материалов в интернете много. «Изюминкой» моей статьи должен стать интерактивный онлайн-расчётник, который позволит менять исходные данные и смотреть, как будет меняться поведение системы.

Главные понятия Теории:

Система массового обслуживания (СМО) объект, принимающий заявки и осуществляющий их обслуживание. Для обслуживания в состав СМО может входить один или несколько приборов Сеть массового обслуживания (СеМО) несколько СМО, между которыми заявки циркулируют. Заявка поступает в какую-либо СМО сети, а получив обслуживание, может поступить в другую СМО сети либо покинуть её. Заявка объект, поступающий в СМО и требующий обслуживания. Также может называться требованием, запросом или как-то ещё. Прибор часть СМО, которая осуществляет обслуживание заявки. Также может называться обслуживающим устройством, каналом, либо это может быть работник или целая бригада. Очередь множество заявок, поступивших в СМО, обслуживание которых ещё не началось по причине занятости всех приборов в системе. Накопитель Часть СМО, в которой содержится очередь.

Исходные данные для рассчётов в ТМО

λ - интенсивность потока заявок среднее количество заявок, поступающих в систему в течение заданного количества времени. Единица измерения - заявок в час (час -1) μ - интенсивность обслуживания среднее количество заявок, которое прибор может обслужить в течение заданного количества времени. Единица измерения - заявок в час (час -1) n - количество обслуживающих приборов количество приборов в составе СМО, каждый из которых может обслуживать заявки. Поступающая заявка обслуживается в любом свободном приборе, т.е. все приборы работают параллельно. Характер потока заявок и обслуживания По своей сути, закон распределения случайной величины времени между поступлением заявок (если речь идёт о потоке заявок) или продолжительности обслуживания конкретной заявки (если речь идёт об интенсивности обслуживания). Может иметь экспоненциальное, нормальное, равномерное или ещё какое угодно распределение. Поток заявок может вообще иметь детерминированный характер (по расписанию), а продолжительность обслуживания может быть и константной m - Размер накопителя Размером накопителя определяется характер СМО: при нулевом размере заявка получает отказ в обслуживании при отсутствии свободных приборов. Если накопитель бесконечный, все заявки будут ожидать обслуживания по мере освобождения приборов. Если же размер накопителя конечный, то при наличии свободных мест заявка помещается в очередь, а при заполнении накопителя заявка получает отказ в обслуживании

Основные показатели работы СМО

ρ - коэффициент загрузки отношение интенсивности потока заявок к суммарной интенсивности обслужвания. Коэффициент загрузки позволяет определить, будет ли система справляться с задачами или из-за перегрузки будет неработоспособной. Вероятность наличия в системе n заявок, вероятность простоя системы наибольшее количество задач ТМО требует найти оптимальное количество обслуживающих приборов или размер накопителя. Вероятность и среднее время ожидания доля заявок, которые попадают в очередь, среднее время пребывания заявок в ожидании начала обслуживания Вероятность отказа доля заявок, получающих отказ в обслуживании. Неактуально для систем с бесконечным накопителем.

Какие задачи позволяет решать ТМО?

Вот несколько типичных задач, которые могут быть решены с применением аппарата теории массового обслуживания. На этой странице скоро появится расчётник, который позволит найти решение этих задач.

  • Классическая задача. Справочная служба имеет многолинейный телефонный номер, в среднем разговор оператора с абонентом длится 3 минуты, а в течение суток поступает 600 звонков. Сколько нужно иметь телефонных линий (и посадить операторов), чтобы не более 2% звонков оставались без ответа по причине занятости всех линий? А если звонков будет 300 или 1400 в течение суток?

    В терминах ТМО задача звучит так:

    • λ = 25 звонков в час (600 звонков поделить на 24 часа)
    • μ = 20 звонков в час (60 минут поделить на 3)
    • m = 0 (при занятости всех линий звонящий абонент услышит гудки «занято»)
    • Найти n , при условии, что вероятность отказа 2%
  • В резервуар водонапорной башни железнодорожной станции непрерывно поступает вода - по кубометру воды за 3 минуты. От водонапорной башни воду получают три гидроколонки для снабжения паровозов водой. На каждую колонку заезжает паровоз в среднем раз в 2 часа и берёт от 10 до 30 кубометров воды (количество воды равномерно распределено в указанном диапазоне). При переполнении резервуара вода вытекает из переливной трубы, чего желательно избегать. Какой объём резервуара требуется водонапорной башне?

    В терминах ТМО задача звучит так:

    • λ = 20 м 3 в час
    • μ = 10 м 3 в час (математическое ожидание разового расхода 20 м
    • n = 2 - количество каналов обслуживания (гидроколонок)
    • Найти m - размер накопителя, т.е. резервуара при условии нулевой вероятности отказа
  • В кассу вокзала приходит в среднем по 200 человек в час. Каждого будущего пассажира кассир обслуживает в среднем 4 минуты. Сколько должно работать касс, чтобы касса успевала обслужить каждого желающего? А сколько должно работать касс, чтобы люди стояли в очереди не более 20 минут?

    В терминах ТМО:

    • λ = 200 человек в час
    • μ = 15 человек в час (60 минут поделить на 4)
    • m = ∞ , т.е. в очереди может быть бесконечно много людей
    • Найти n , при котором S имеет конечную величину
  • Пора уже что-то посчитать!

    Вычислительные мощности, доступные каждому в XXI веке колоссальны, и позволяют легко и непринуждённо проводить ресурсоёмкий расчёт - имитационное моделирование . В таблице ниже осуществляется моделирование простенькой одиночной системы массового обслуживания. Можно изменять любые из исходных данных и наблюдать, как система отзывается. Можно, например, увеличить интенсивность потока заявок и наблюдать, как система будет «утопать» в заявках (или увеличится поток отказов, если размер накопителя конечен). А вслед за этим можно увеличить количество приборов в системе и наблюдать, как показатели работы придут в норму. В этом расчёте предельная длина очереди равна 1000. Для большинства применений это можно считать бесконечно большим накопителем, однако следует помнить, что если в накопителе окажется больше тысячи заявок, расчёт будет некорректным.

    Параметр Величина Пояснение
    Исходные данные
    λ в час - Интенсивность потока заявок
    P μ (t) Эксп.
    Эрл.
    Закон распределения времени обслуживания: экспоненциальный .
    μ в час - Интенсивность потока обслуживания (каждым прибором)
    25% за минут 50% за минут 99% за минут
    50% в интервале минут 95% в интервале минут
    n Количество каналов обслуживания (не более 50)
    Результаты моделирования (на момент)
    t Время моделирования
    S Состояние СМО, т.е. количество заявок на обслуживании + в накопителе
    S-n Длина очереди
    Статистика , показатели работы системы
    Количество поступивших заявок
    p 0 Вероятность простоя СМО
    P 1-n Загруженность обслуживающих приборов
    S MAX Максимальное количество заявок в системе за время моделирования
    p W Вероятность ожидания
    T W Среднее время ожидания, мин.
    T Wmax Максимальное время ожидания, мин.
    P n Распределение вероятностей пребывания СМО в различных состояниях
    T W Распределение времени ожидания в очереди

    Если интересно, см. математической модели в этой таблице. Даже такая модель позволяет делать интересные наблюдения. Например, можно сравнить несколько СМО с одинаковой производительностью μ×n, обслуживающих одинаковый поток заявок λ, но содержащих различное количество обслуживающих приборов n. В зависимости от того, стремимся ли мы сократить количество обслуживающих аппаратов или же вероятность ожидания, выгодным будет либо наличие одного высокопроизводительного прибора, или десятка низкопроизводительных. Также видно, что среднее арифметическое времени ожидания - величина коварная. Надо будет сделать расчёт медианной величины...

    См. также:

    • Моделирование системы массового обслуживания — более серьёзный расчёт с более гибко регулируемыми параметрами

    Сеть массового обслуживания (СеМО) - сеть, которая производит обслуживание поступающих в неё требований. Обслуживание требований в СМО производится обслуживающими приборами. Классическая СМО содержит от одного до бесконечного числа приборов. В зависимости от наличия возможности ожидания поступающими требованиями начала обслуживания СМО подразделяются на:истемы с потерями, в которых требования, не нашедшие в момент поступления ни одного свободного прибора, теряются;истемы с ожиданием, в которых имеется накопитель бесконечной ёмкости для буферизации поступивших требований, при этом ожидающие требования образуют очередь;истемы с накопителем конечной ёмкости (ожиданием и ограничениями), в которых длина очереди не может превышать ёмкости накопителя; при этом требование, поступающее в переполненную СМО (отсутствуют свободные места для ожидания), теряется.

    Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (или требований), поступающих на вход системы большей частью не регулярно, а в случайные моменты времени. Обслуживание заявок, в общем случае, также длится не постоянное, заранее известное, а случайное время. После обслуживания заявки канал освобождается и готов к приему следующей заявки. Случайный характер потока и времени их обслуживания приводит к неравномерной загруженности СМО: в некоторые промежутки времени на входе СМО могут скапливаться необслуженные заявки (они либо становятся в очередь, либо покидают СМО необслуженными), в другие же периоды при свободных каналах на входе СМО заявок не будет, что приводит к недогрузке СМО, т.е. к простаиванию каналов.

    Таким образом, во всякой СМО можно выделить следующие основные элементы:

    ) входящий поток заявок;

    ) очередь;

    ) каналы обслуживания;

    ) выходящий поток обслуженных заявок.

    Каждая СМО в зависимости от своих параметров: характера потока заявок, числа каналов обслуживания и их производительности, а также от правил организации работы, обладает определенной эффективностью функционирования (пропускной способностью), позволяющей ей более или менее успешно справляться с потоком заявок.

    Предметом изучения теории массового обслуживания являются СМО.

    Цель теории массового обслуживания - выработка рекомендаций по рациональному построению СМО, рациональной организации их работы и регулированию потока заявок для обеспечения высокой эффективности функционирования СМО.

    Для достижения этой цели ставятся задачи теории массового обслуживания, состоящие в установлении зависимостей эффективности функционирования СМО от ее организации (параметров): характера потока заявок, числа каналов и их производительности и правил работы СМО.

    Случайный характер потока заявок и длительности их обслуживания порождает в СМО случайный процесс.

    Определение: Случайным процессом (или случайной функцией) называется соответствие, при котором каждому значению аргумента (в данном случае - моменту из промежутка времени проводимого опыта) ставится в соответствие случайная величина (в данном случае - состояние СМО). массовое обслуживание

    Для всех моделей сетей очередей, описанных в главе 2, предполагалось, что длительности обслуживания требований на различных этапах маршрута независимы. Это неадекватно отражает реальную ситуацию в сетях передачи информации, где длина (объем) сообщения в процессе его передачи от одного узла к другому не меняется, что приводит к необходимости исследования сетей с зависимыми (в частности, идентичными) длительностями передачи сообщений на каналах.

    В настоящей работе, следуя предполагается, что наряду с длительностью обслуживания каждое сообщение характеризуется также своим объемом, а относительно длительностей обслуживания предполагается лишь их условная (при фиксированном объеме) независимость, что позволяет фактически учитывать зависимость длительностей обслуживания одного и того же сообщения на различных этапах своего маршрута. При этом мы ограничиваемся принципами маршрутизации Келли (сети типа Джексона с марковской маршрутизацией являются частным случаем рассматриваемой модели).

    Приводится альтернативное доказательство мультипликативного представления для стационарных вероятностей состояний таких сетей с узлами различных типов, реализующими так называемые симметричные дисциплины обслуживания, и допускающими зависимость обслуживания требований в различных узлах маршрута. При этом не затрагиваются тонкие вопросы существования стационарных распределений для общих сетей, которые представляют собой предмет самостоятельных исследований.

    5.2.1 Описание сети. Обозначения

    Рассмотрим сеть МО, для описания которой будем использовать следующие обозначения:

    М - конечное множество узлов сети,

    М - число узлов в сети МО,

    Номер узла, .

    Узлы предполагаются следующих типов:

    0) экспоненциальные многолинейные с бесконечной емкостью накопителя и дисциплиной FIFO (отметим, что приведенную ниже теорему нетрудно перенести на экспоненциальные узлы со случайным выбором прибора или места в очереди);

    1) бесконечнолинейные;

    2) однолинейные с бесконечной емкостью накопителя, инверсионной дисциплиной обслуживания с прерыванием обслуживания и дообслуживанием;

    3) однолинейные с бесконечной емкостью накопителя и дисциплиной равномерного разделения прибора.

    Множество узлов типа обозначается а число приборов в узле - .

    Всюду, как и раньше, прописными латинскими буквами будем обозначать случайные величины, а их реализации - соответствующими строчными буквами, причем векторные случайные величины и векторы будем выделять полужирным шрифтом.

    В сеть поступает пуассоновский поток заявок интенсивности , а каждая поступающая в заявка характеризуется набором случайных величин , не зависящих от аналогичных случайных величин для остальных заявок и предыстории функционирования сети, где:

    Случайная длина маршрута заявки, т.е. число этапов, на которых она будет обслуживаться;

    Случайный маршрут, представляющий собой набор номеров узлов (возможно повторяющихся), последовательно проходимых заявкой на всех L этапах;

    Случайные объемы на последовательно проходимых этапах маршрута, вообще говоря, различные на различных этапах;

    Случайные длительности обслуживания на последовательно проходимых этапах маршрута, также, вообще говоря, различные на различных этапах. Отметим, что если на некотором этапе заявка обслуживается в узле типа 2 или 3, то длительность обслуживания на данном этапе представляет собой то время, которое обслуживалась бы в этом узле заявка, если бы в нем не было других заявок.

    Объем Y может иметь как реальный физический смысл в виде, например, объема памяти, необходимого для записи сообщения, так и носить вспомогательный характер, например, для задания типов заявок в сети; в последнем случае рассматриваемая модель может трактоваться, как сеть МО с континуальным множеством типов сообщений.

    Очевидно, что при таком описании сети объем и длина соответствуют обслуживанию заявки в узле с номером . Напомним, что допускаются маршруты R, в которых номера могут повторяться, т.е. заявка может обслуживаться в одном и том же узле s несколько раз, причем с различными длительностями обслуживания.

    Статистические характеристики случайной величины задаются совместной функцией распределения (ФР)

    совместную ФР маршрута и объемов заявки на этапах, через

    условную совместную ФР длительностей обслуживания заявки на этапах при фиксированных маршруте и объемах и через

    условную ФР длительности обслуживания заявки на этапе (в узле с номером ) при фиксированных маршруте и объемах.

    Относительно введенных функций делаются следующие предположения.

    (П 1.) Длительности обслуживания предполагаются условно независимыми вдоль маршрута, т.е. условная ФР имеет вид

    (П 2.) Экспоненциальные узлы s являются -линейными СМО (с бесконечной емкостью накопителя), интенсивности обслуживания в которых любой заявки каждым прибором равны

    Таким образом, если , т.е. на этапе маршрута заявка обслуживается в узле s типа 0, то

    Иными словами, длительность обслуживания в узле типа 0 не зависит ни от маршрута R, ни от объемов Y (включая объем ) и имеет экспоненциальное с параметром распределение.

    (П 3). Функции распределения не содержат сингулярной компоненты.

    Тогда их плотности, понимаемые в обычном смысле для абсолютно непрерывных распределений или в обобщенном смысле для дискретных и смешанных распределений, и обозначим через соответсвенно.

    Кроме того, для узлов типов 1-3 положим

    и для сокращения записи результатов обозначим дополнительно через

    условные плотности распределения времени окончания (интенсивности) обслуживания заявки с характеристиками на этапе маршрута (в узле ) при условии, что она обслуживалась время Заметим при этом, что если на этапе маршрута заявка обслуживается в экспоненциальном узле с номером (т.е. если ), то

    Похожие статьи

    © 2024 choosevoice.ru. Мой бизнес. Бухгалтерский учет. Истории успеха. Идеи. Калькуляторы. Журнал.