Ядерные реакторы подводных лодок. Атомные установки подлодок

Атомная энергетика в России с момента своего появления оставалась прерогативой государства, особенно в части развития новых технологий. Частные инвесторы в последние годы не раз предпринимали попытки войти на этот рынок, и успеха пока удалось добиться только En+ Group, управляющей активами Олега Дерипаски. Паритетное СП Росатома и En+ будет адаптировать реакторы атомных подводных лодок к гражданским нуждам. О деталях будущего проекта и его перспективах в интервью «Интерфаксу» рассказала гендиректор СП Анна Кудрявцева.


- Вы достаточно давно прорабатывали этот проект. Когда была зарегистрирована компания? Каковы будут вклады сторон: инвестиции со стороны Евросибэнерго и доля Росатома?

СП зарегистрировано 10 декабря, вклады сторон - 50 на 50. Вносим не только инвестиции, но и интеллектуальную собственность тоже.
У нас есть базовая технология реактора со свинцово-висмутовым теплоносителем СВБР (свинцово-висмутовый быстрый реактор - ИФ), которая была отработана отраслевыми организациями - «Гидропрессом» и Обнинским Физико-энергетическим институтом. Установки СВБР, только меньшей мощности, эксплуатировались на атомных подводных лодках. Так что СВБР - апробированная технология, и Россия - единственная страна в мире, которая имеет данную работоспособную технологию.

- А за рубежом кто-то занимается аналогичными проектами реакторов со свинцово-висмутовым теплоносителем?

- Какие-то страны находятся на стадии НИОКР, кто-то имеет только предварительные заделы и концепции.

- На каких заказчиков ориентированы АЭС с реакторами СВБР?

Такие станции предназначены для нужд региональной энергетики, где есть потребность в генерации средней и малой мощности с повышенным уровнем безопасности. Я имею в виду в первую очередь труднодоступные районы, где ведут добычу металлургические компании, или нефтегазовые.
Кроме того, у проекта большой экспортный потенциал, в первую очередь в Африке и Азии, где по объемам потребления не нужны реакторы-тысячники (мощностью 1000 МВт - ИФ), или они не подходят из-за сетевых ограничений. Но им при этом нужен повышенный уровень безопасности, такой, чтобы если что-то случается, установка самозаглушилась. А у нас как раз сам принцип реактора нацелен на то, чтобы обеспечить максимальную безопасность даже в не слишком умелых руках.

- Раньше приводилась оценка суммарной стоимости проекта - до $1 млрд. Подтверждаете эту сумму?

- Весной мы оценивали необходимые инвестиции примерно в 14 -16 млрд рублей (на срок до 2019 г.), но это в докризисных ценах. С учетом кризиса понятно, что данная сумма будет корректироваться. С одной стороны, мы видим удешевление рабочей силы, и по некоторым позициям - оборудования, подготовительных работ. С другой стороны мы понимаем, что есть инфляция.
Подчеркну, что мы в рамках СП закладываем четкий принцип: использование всех классических канонов проектного управления. То есть будет идти строгий контроль за расходами с обеих сторон.

- Росатом и частный инвестор имеют паритетные доли. А как будет осуществляться разрешение спорных вопросов?

Международный арбитраж.

Оценку интеллектуальной собственности вы уже провели? Когда «Росатом» внесет ее в СП, и как это будет осуществляться?

Предварительные переговоры с партнером по этому вопросу прошли. Однако остаются вопросы по процедуре оценки этих активов по их реальной стоимости. Дело в том, что сейчас разработки по проекту СВБР являются собственностью предприятий отрасли. И, как правило, их оценка по балансу довольно низкая. Для того чтоб нам внести данную интеллектуальную собственность в СП по коммерческой стоимости, нужна будет переоценка. Но при этом возникают вопросы законодательного характера, ведь переоценка вызовет для предприятий последствия налогового характера. Проще говоря, у них возникает налог на прибыль. Это проблемная точка не только нашего проекта, она характерна для страны в целом.
В связи с этим Госкорпорация «Росатом» создала межотраслевую рабочую группу, которая пока находится в стадии становления. Туда, как мы ожидаем, войдут все ведущие технологические корпорации. Например, уже подтвердили свое участие Ростехнологии. Также привлекаем к этой деятельности Роснано, РЖД и Газпром. В рамках рабочей группы будут отрабатываться предложения по совершенствованию законодательства РФ в части научно-технической и инновационной деятельности, и, в частности, того, что касается учета в активах интеллектуальной собственности. В 2010 году мы планируем подготовить пакет соответствующих законодательных инициатив.

- А когда, в таком случае, вы ожидаете корректировки законов?

Скорее всего, как мы надеемся, эти предложения могут быть утверждены в 2011 году. Но торопиться мы не будем.

- Можете оценить, какова будет доля интеллектуальной собственности в общей стоимости проекта?

- У нас есть предварительная цифра, но это конфиденциальная информация.

- Какие приоритетные задачи СП определило для себя на ближайшие годы?

Первая стадия нашей работы - НИОКР и подготовка гражданского проекта. Закладываем на это примерно 3,5-4 года. Управление НИОКРами с обеспечением результативности - задача номер один.
Вторая точка приложения наших усилий - определение места размещения пилотной установки. Мы выбираем сейчас из трех площадок, все это - отраслевые предприятия, где сосредоточены кадровые и технические ресурсы. Не хотелось бы пока их называть. В начале 2010 года, думаю, будет сделан выбор в пользу одной из площадок.
Выбирать будем по набору критериев, среди которых технико-геологические характеристики, кадровый потенциал, экономика проекта, а также энергодефицитность региона. Несмотря на то, что мощность пилотной установки будет маленькая, мы рассматриваем ее не только как площадку для отработки технологий, но и как экономический объект.

Основой атомной энергетики сейчас являются АЭС с реакторами ВВЭР, которые несут базовую нагрузку в ЕЭС России. То есть они не могут маневрировать в течение суток вслед за изменением потребления. А станции с реакторами СВБР тоже будут работать в базе?

Маневренность - это одна из характеристик, которую мы закладываем в проект. Еще одно преимущество СВБР - модульность. Реактор на 100 МВт не будет монтироваться на месте, он будет собираться на заводе-изготовителе и доставляться затем на площадку. Это удешевляет проект.

- Уже понятно, кто будет заводом-изготовителем?

Есть целый ряд предприятий, отраслевых и не отраслевых, которые мы рассматриваем. Готовы также смотреть на зарубежных поставщиков оборудования. Кроме того, у самого СП стоит задача по развитию компетенций не только в сфере инжиниринга атомных станций, но и в части реакторостроения.
Отмечу, что сейчас в связи с кризисом у машиностроителей меньше заказов от традиционной энергетики, и активной борьбы за их мощности не происходит, так что в этом смысле мы стартуем в удачное время.

- Стоимость 1 кВт мощности станции с реактором СВБР будет сопоставима с ценой ВВЭР?

На опытно-промышленной установке экономики никогда не получается. Дальше весь вопрос - в конфигурации серийного блока. Мы сейчас ведем проработку этого вопроса, оцениваем рынок, в том числе зарубежный. Чем больше мощность АЭС, тем станция экономичнее, и, в конечном счете, возможно, оптимально было бы строить станции с реакторами СВБР сразу на 1000 МВт. Мы и это можем делать. Другой вопрос, что у атомной отрасли в этой мощностной линейке есть и «быстрые» натриевые реакторы (проект БН-800 - ИФ), и ВВЭР. Поэтому в эту нишу мы вряд ли будем заходить, а скорее сосредоточимся на региональной энергетике.
Предварительная оценка показывает, что оптимальная мощность АЭС с СВБР будет в пределах 200-400 МВт. Но в результате все будет зависеть от рынка, от того, сколько рынок сможет съесть.
Более отчетливо экономические параметры проекта будут видны, когда пилотная установка заработает. Хотя, безусловно, все базовые расчеты и прогнозы мы делаем уже сейчас.

- Как будут решаться вопросы по радиоактивным отходам СВБР?

В части отходов особых проблем у нас нет. Понятны и очевидны какие-то рисковые технические точки, но неразрешимой критики нет, только чисто инженерные вопросы.
В целом в отрасли сейчас создается единая система обращения с РАО и ОЯТ, и мы туда просто вписываемся, будем потребителями услуг национальных операторов в этой сфере. Также и с топливом будет.

- Какое кстати топливо использует СВБР?

Пока будем использовать традиционное топливо - обогащенный уран. Далее будет, по всей видимости, уран-плутониевое топливо (МОКС), и на следующем этапе - плотное топливо, когда оно появится. Геометрия активной зоны СВБР позволяет использовать любые виды топлива.

- Если я правильно понимаю, СВБР может быть и наработчиком ядерных материалов, так называемым «бридером»?

Да, это так. Хотя у нас нет самоцели заниматься наработкой плутония. Наоборот, с точки зрения нераспространения лучше «бридерами» эти установки не делать. К тому же есть «быстрые» натриевые реакторы, которые могут наработать все, что нужно отрасли для производства МОКС-топлива, в частности. И потом, должна быть определенная пропорция реакторов - потребителей МОКСа, и наработчиков плутония для этих целей. И эта доля не один к одному.

Насколько нам известно, ранее обсуждалась возможность использования СВБР для размещения на площадках АЭС, выведенных из эксплуатации. Например, на Нововоронежской станции, где уже отработали свой ресурс 1-й и 2-й энергоблоки. Эта идея еще актуальна?

Как опция такой вариант рассматривается, но детальной проработки мы пока не делали. Впрочем, также мы пониманием, что на рынке могут быть востребованы дополнительные услуги СВБР, такие как перегретый пар, тепло, установки по опреснению воды.

- Проект рассчитан на достаточно длинный период реализации, а сейчас, в условиях кризиса, многие частные инвесторы сталкиваются с финансовыми трудностями. Допускаете вариант, что ваш партнер по каким-то причинам может выйти из проекта или сократить свое участие в нем?

- Наш партнер, Евросибэнерго, подтвердил свою заинтересованность, в том числе на уровне руководства, и предоставил определенные гарантии. Мы работаем уже полтора года, и финансирование в течение 2009 года, в частности, идет и со стороны Евросибэнерго.

- Сколько денег уже вложено?

Точную сумму назвать невозможно, потому что нет ясности, как корректно оценить по затратному принципу то, что было вложено в советские годы, и в частности по линии министерства обороны, ведь реакторы СВБР эксплуатировались на АПЛ.
В целом по проектам такого рода со стороны затрат оценку сделать невозможно. Поэтому если оценивать, то только по доходному принципу.

- Вы рассчитываете и на поддержку государства. В чем она будет выражаться?

У этого вопроса есть два аспекта, как две стороны одной медали. Во-первых, есть отраслевая ФЦП по ядерным технологиям нового поколения, где отдельной статьей прописано развитие «быстрой» энергетики, то есть реакторов с натриевым, свинцовым и свинцово-висмутовым теплоносителями. Финансирование по направлению СВБР там предусмотрено, и мы рассматриваем это как вклад государства в дело госкорпорации. И вторая сторона - в рамках президентской комиссии по модернизации наш проект еще в июле был утвержден, с пометкой «без дополнительного финансирования». Там есть такой формат, подтверждающий приоритетный статус проекта.

Атомные подлодки и прочие суда с ядерными энергоустановками используют радиоактивное топливо - главным образом уран - для превращения воды в пар. Полученный пар вращает турбогенераторы, а те производят электроэнергию для движения судна и питания различного бортового оборудования.

Радиоактивные материалы, подобные урану, выделяют тепловую энергию в процессе ядерного распада, когда неустойчивое ядро атома расщепляется на две части. При этом выделяется огромное количество энергии. На атомной подлодке такой процесс осуществляется в толстостенном реакторе, который непрерывно охлаждается проточной водой, чтобы избежать перегрева, а то и расплавления стенок. Ядерное топливо пользуется особой популярностью у военных на подлодках и авианосцах благодаря своей необычайной эффективности. На одном куске урана размером с мяч для гольфа подлодка может семь раз обогнуть земной шар. Однако ядерная энергия таит в себе опасность не только для экипажа, который может пострадать, если на борту произойдет радиоактивный выброс. В этой энергии заложена потенциальная угроза всей жизни в море, которая может быть отравлена радиоактивными отходами.

Принципиальная схема машинного отсека с ядерным реактором

В типичном двигателе с ядерным реактором (слева) охлажденная вода под давлением попадает внутрь корпуса реактора, содержащего ядерное топливо. Нагретая вода выходит из реактора и используется для превращения другой воды в пар, а затем, остывая, вновь возвращается в реактор. Пар вращает лопасти турбинного двигателя. Редуктор переводит быстрое вращение вала турбины в более медленное вращение вала электродвигателя. Вал электродвигателя при помощи механизма сцепления соединяется с гребным валом. Кроме того, что электродвигатель передает вращение гребному валу, он вырабатывает электроэнергию, которая запасасется в бортовых аккумуляторах.

Ядерная реакция

В полости реактора атомное ядро, состоящее из протонов и нейтронов, подвергается удару свободного нейтрона (рисунок ниже). От удара ядро расщепляется, и при этом, в частности, освобождаются нейтроны, которые бомбардируют другие атомы. Так возникает цепная реакция деления ядер. При этом освобождается огромное количество тепловой энергии, то есть тепла.

Атомная подлодка курсирует вдоль побережья в надводном положении. Таким кораблям надо пополнять топливо лишь один раз в два-три года.

Группа управления в боевой рубке наблюдает за прилегающей акваторией в перископ. Радиолокатор, гидролокатор, средства радиосвязи и фотокамеры со сканирующей системой также помогают вождению этого судна.

Запускаем атомный реактор

В этой главе

Нормальный или быстрый запуск.

Тот, кого стоит бояться: помощник капитана.

Называйте его «инженер».

Прощаясь с берегом.

Есть два вида запуска реактора: нормальный и быстрый. Во время быстрого запуска происходит перезапуск реактора после того, как он был приостановлен. Это похоже на запуск двигателя вашего автомобиля после заправки. Все температурные показатели находятся в пределах нормы, механизм «привык» к работе, поэтому в какой-то степени быстрый запуск довольно прост. Он требует определенных навыков и опыта от подводников, но его проще произвести, чем нормальный запуск.

Нормальный запуск - процедура, которая используется при запуске реактора после длительного перерыва в работе. Она производится в соответствии с Процедурой № 5 Руководства по эксплуатации атомного реактора и Операционной инструкции № 27. Процедура № 5 - это что-то вроде общего положения, в котором объясняется, почему те или иные вещи делаются именно таким образом. Она все равно имеет законную силу, по крайней мере, в подводном флоте, и её нарушение может привести в лучшем случае к «дисквалификации».

Операционная инструкция № 27 - очень детализированный список клапанов. Хотя он и расположен более чем на 30 страницах, операторы реактора знают его так хорошо, что могут процитировать отрывок любой длины. Один из старших офицеров-подводников знал эту Инструкцию настолько хорошо, что однажды они устроили что-то наподобие аттракциона: младший офицер открывал Инструкцию в любом месте, а старший цитировал любой абзац из нее. Он мог делать это часами, и, хотя пива хватало на небольшую вечеринку, он делал поразительно мало ошибок.

Нормальный запуск реактора «по книге»

Итак, как вам запустить атомный реактор? Во-первых, откройте глаза, когда вас спящего встряхнул старший вахтенный офицер. На часах 1:45. Вы заснули на столе в вахтенной комнате полчаса назад после того, как проработали над предстартовым списком весь день. Вы встаете, напяливаете свою гимнастерку и перешнуровываете морские ботинки. Затем вы насыпаете 2 ложки кофе в чашку, размешиваете и заглатываете его перед тем, как идти в хвостовую часть подлодки в машинное отделение.

Ваша смена закончится в 7:00, когда офицеров вызывают к помощнику капитана. Вахтенные в реакторном отсеке сменяются в 7:30, когда вы поднимаетесь в парус, занимаете позицию дежурного офицера и выводите подлодку из порта. К тому моменту, когда вы вернетесь на свое спальное место, подлодка уже погрузится под воду. Это будет после ужина.

Нормальный запуск реактора нужно делать только в предрассветные часы. Если все проходит хорошо, то к 6 часам утра, когда старший вахтенный инженер прибывает на судно, оно может отплывать.

ХО вовсе не означает «обнимаю и целую»

Помощник капитана - второй по старшинству на подлодке. Он выполняет всю тяжелую работу за капитана, позволяя ему уделить больше внимания тактическим замыслам. Все обязанности, которые, как вы думали, выполняются капитаном, на самом деле выполняются помощником капитана. Капитан находится в своей каюте в глубоком раздумье, в то время как помощник капитана «тушит пожар». Капитан прибывает на борт подлодки в 10:00, обедает с офицерами и отправляется играть в гольф с адмиралом.

А помощник капитана просыпается рано, просматривает целую кипу бумаг и отчитывает по 5 офицеров к тому времени, как начинается совещание офицеров в 7:00. На совещании офицеров все главы подразделений (главный инженер, навигатор, офицер вооружений и офицер службы снабжения) и младшие офицеры подразделений, которые докладывают главам подразделений, садятся за стол в вахтенной комнате и просматривают список приказов помощника капитана. Если вам пришлось выбирать человека на роль помощника капитана, вы постараетесь вспомнить самого неприятного человека, которого вы только знаете, но вы наделяете его при этом большим авторитетом.

На одной подлодке помощника капитана ненавидели и боялись. Офицеры о нем очень плохо отзывались. В последний день пребывания на подлодке помощника капитана, в иностранном порту посреди очень напряженной операции, когда он сходил на берег, где его ждал автомобиль, офицеры едва сдерживали слёзы.

Наблюдая за этим молодым курсантом, я спросил одного из офицеров, что происходит.

«Вы ненавидели помощника капитана?» - спросил я.

«Он был моим вторым отцом», - фыркнул лейтенант и оттолкнул меня со своего пути. Человек никогда не забывает свою первую любовь и своего первого помощника капитана.

Помощник капитана - моряк на все руки. Будучи старшим офицером реакторного отсека, он, наверное, когда-то был и инженером, перед тем как стать помощников капитана. Он заставляет инженера «бегать и прыгать», чтобы все бумаги касательно реактора были в порядке. У него есть свои подчинённые, и каждый младший офицер докладывает помощнику капитана обо всем, что тот хочет знать. Каждая записка по пути к капитану корректируется помощником капитана.

Адмирал - командующий эскадрой подлодок и начальник капитана. Это верно только в порту, потому что в море капитан докладывает лишь старшему адмиралу, например, Командующему подлодками Атлантического флота, или командиру боевого подразделения.

Помощник капитана управляет работой на подлодке, он самый занятой человек на борту, он зачастую работает до поздней ночи или поднимается очень рано утром. Если вам нужно совершить невозможное, то помощник капитана - как раз тот, кто вам нужен. Если вас выбрали на должность помощника капитана, то вам сначала лучше взять отпуск. В течение следующих трех лет вы вряд ли увидите что-нибудь кроме работы и сна, а последний вовсе вам не гарантирован. И убедитесь, что ваша жена относится к независимому типу людей, потому что она не будет вас видеть подолгу.

Экскурсия перед вахтой

Вернёмся к реактору: вы находите старшего вахтенного офицера и просите его объявить по переговорному устройству 1МС и послать кого-нибудь, чтобы тот пробежал по спальным секциям вахтенных и собрал всех в задней части подлодки на запуск реактора.

Как только вы пошли в инженерные помещения, вы начали свою экскурсию перед вахтой. Вы практически живете в хвостовой части подлодки, поэтому любое из ряда выходящее событие вам сразу видно. Вы убеждаетесь в том, что вахтенные внимательно следят за работой систем. Они заняли спои позиции, все с заспанными глазами, и морщинах и небритые. На мгновение вас охватывает чувство восхищения моряками-атомщиками этой подлодки. Какие это люди, они встали посреди ночи, чтобы запустить реактор, и не было слышно ни одной жалобы. Все они уверенные в себе профессионалы.

Когда вы проходите мимо щелей и углов силовой установки на своем пути на нижний уровень машинного отделения, вы вспоминаете строку Хемингуэя, которую любил коверкать один из младших офицеров: «Спустился вниз посмотреть, как обстоят дела. Дела были плохи». Вы улыбаетесь про себя, поднимаясь по лестнице на верхний уровень машинного отделения, и оказываетесь в компании вахтенного контролёра машинного отделения и вахтенных верхнего уровня машинного отделения.

Вахтенный контролёр машинного отделения - начальник, который является высокопрофессиональным моряком-атомщиком. Он может управляться с вахтой и без вас, но ему, скорее всего, не захочется этого делать. Вы стоите между бортовыми турбинными генераторами и обсуждаете запуск реактора и его состояние. Он отвечает, что все номинально и готово к запуску. Вы говорите, что встретитесь с ним через 5 минут в комнате управления реактором.

Вы подходите к двери в комнату управления реактором. Это священное место, но оно непохоже на обиталище высших священников во дворце. Здесь люди не повышают голоса. Никто не входит сюда без разрешения офицера-атомщика этой комнаты, если только он не главный инженер, помощник капитана, капитан или старший вахтенный офицер.

Имя ему «инж.»

Инж. - универсальное сокращенное наименование главного инженера, или инженера, в ВМФ. Офицеров на посту инженера за все три года плавания называют не иначе как «инж.».

Иногда кажется, что люди даже забывают настоящее имя инженера. Если позвоните ему домой и ответит его жена, то вы все равно попросите к телефону «инжа». Она поймёт. Никого не удивит, что даже его дети называют его так. На борту некоторых подлодок, если инженер чересчур надоедлив, его могут называть «динж» (долбаный инженер).

Инженер - высокое звание среди моряков-атомщиков. Он всемогущ, он бог на борту подлодки. Вот почему, когда его отчитывает помощник капитана на собрании офицеров, это выглядит, как будто Бог-отец ругает Иисуса. И если помощник капитана - это небесное создание, которое дергает за ниточки, управляя божеством, то капитан обладает неимоверной властью.

Вахтенный инженер

Он является своего рода представителем инженера и осуществляет управление реактором. Когда работа реактора и парового генератора приостановлена, то инженер реакторного отсека становится дежурным инженером. Когда происходит запуск реактора или реактор достиг критической массы, то назначают вахтенного инженера, и он обычно несет вахту в хвостовой части подлодки. Вахтенный инженер никогда не покинет машинного отделения.

Вахтенный инженер несёт ответственность за безопасность реактора и за общую безопасность в хвостовой части подлодки. Из всего, что он делает, обязанности вахтенного инженера во время затопления являются одними из самых важных, потому что умелое обращение с аварийными выключателями может спасти подлодку от того, чтобы повторить судьбу «Трэшера».

Кто-то обязательно должен заменить вахтенного инженера на его посту, когда он отлучается в туалет. Хотя в хвостовом отсеке и есть туалеты, они не оборудованы надлежащим образом.

Входим в комнату управления реактором

Перед дверью в комнату управления реактором висит цепь на уровне пояса. Вы снимаете цепь, но не входите внутрь, пока не скажете: «Вхожу в комнату управления реактором».

Ваш любимый оператор реактора отзовётся: «Понял вас, входите». Он держит руку в воздухе и смотрит на панель управления реактором. Вы «даете ему пять», встаёте перед панелью управления реактором и смотрите на показания приборов. Не говоря ни слова, он протягивает вам через плечо большой блокнот, Вы просматриваете записи показаний температуры, давления и уровня мощности. После нескольких лет вы можете читать эти записи с такой же легкостью, как выражение лица вашей подружки. Состояние реактора оценивается как номинальное.

Номинальный уровень

Когда говорят, что что-то находится в номинальном состоянии, это значит, что:

для этих показателей существует определенный безопасный диапазон,

данный показатель находится внутри данного диапазона.

Номинальный и нормальный - не одно и то же, на подлодки нет ничего нормального. В конце концов, какой нормальный человек запрет себя в железной трубе со 120 другими потеющими моряками, будет погружаться на глубину нескольких сот метров на месяцы и добровольно находиться в опасной близости от ядерного оружия?

Наступило время рассмотреть приборы панели управления паровой установкой, располагающиеся слева. Вы бросаете взгляд на приборы и киваете офицеру, обеспечивающему движение судна. Справа от панели расположена панель управления электроустановкой. Оператор электроустановки выглядит сонным, поэтому вы толкаете его и просите кого-нибудь принести кофе. Он вам очень благодарен. Вы снова смотрите на приборы и проверяете записи оператора электроустановки. Установка внутри и снаружи комнаты управления реактором находится в номинальном состоянии. Вы подходите к креслу вахтенного инженера, которое представляет собой стул на длинных ножках (такие вы можете увидеть у стойки бара), расположенный около стола/книжной полки. Над столом висит огромный схематический чертёж расположения трубопроводов реактора. С помощью чёрного карандаша обозначены клапаны, которые закрыты или открыты в процессе выполнения той или иной инструкции. Красным обозначены клапаны с надписью «опасность», обычно они закрыты. Вы просматриваете опасные клапаны в журнале записей вахтенного инженера. А сейчас мы рассмотрим предполагаемую критическую позицию.

Ещё несколько слов о номинальном состоянии: например, вы можете спросить: «Как дела у твоей подруги?» Вам могут ответить: «Её состояние номинально». Это значит, что её состояние находится в предполагаемых границах, но также это подразумевает, что она не обязательно в лучшей части этого диапазона. Теоретически, ваша подружка может быть и ангелом, и бесом, поэтому все, что укладывается а этот диапазон, считается номинальным. Если значение приходится на лучшую часть спектра, то ответ мог быть и другим.

Расчётное критическое состояние

Расчётное критическое состояние - вычисление объема негативной реактивности в активной зоне реактора из-за наличия ксенона, образовавшегося за время последней приостановки реактора. Вы обращаетесь к графикам, которые показывают ресурс реактора (использованное количество часов работы на полную мощность), количество часов работы с момента последней приостановки, а также «биографию» реактора до приостановки. Всё это сказывается на объеме ксенона, содержащегося в активной зоне реактора. Вы также принимаете во внимание температуру реактора. График даст вам информацию о том, насколько нужно вынуть контрольные тяги из активной зоны реактора, чтобы создать критическую массу внутри него. Если реактор не достиг критической массы, то Инструкция по выполнению операций № 27 требует от вас проверки вычислений расчетного критического состояния или исправности ядерного оборудования. Если ядерное оборудование неисправно, а вы продолжаете вынимать контрольные тяги из активной зоны реактора, то вы можете сделать так, что реактор в мгновение достигнет критической массы (см. Главу 6, в которой описаны другие виды аварий реактора).

Группа контрольных тяг - несколько тяг, которые соединены с инвертором. Например, внешнее кольцо контрольных тяг - группа 3. Среднее кольцо - группа 2, а 6 центральных контрольных тяг составляют 1-ю группу.

На определенном этапе жизни активной зоны реактора вы начинаете поднимать вверх группу 3. Вы оставляете группу 2 на дне реактора, а 1-ю вы вытягиваете до достижения критической массы. Фраза «я контролирую реактор с помощью группы 1» означает, что вы контролируете температуру активной зоны реактора с помощью группы 1. В дальнейшем группы 2 и 3 меняются местами - группа 2 наверху, а 3-я группа на дне активной зоны реактора. Таким образом топливо в реакторе сжигается равномерно.

Инвертор - электронное устройство, которое, подобно большому реостату, использует резисторы, чтобы снизить напряжение постоянного тока. В результате он создает ступенчатую волновую функцию напряжения, чтобы создать переменный ток. Он преобразует постоянный ток в переменный. В инверторе контроля реактора используется трехступенчатый переменный ток, инвертор «замораживает» волну в определённый момент.

Звоним инженеру домой

Вы проверяете расчётное критическое состояние и отмечаете его в журнале. Если бы инженер находился на борту, он бы тоже её отметил. Иногда инженер просит присылать ему домой по факсу распечатку расчетного критического состояния, но так как вы опытный офицер-инженер, он просто просит позвонить ему и рассказать, как обстоят дела. Вы смотрите на часы: часы подводника показывают 2:15. Вы поднимаете трубку телефона и набираете домашний номер инженера. Вы докладываете обстановку, и заспанный инженер говорит, что он рекомендует запускать реактор.

Рядом с вами звонит телефон. «Вахтенный инженер», - произносите вы.

«Дежурный офицер», - доносится из трубки. Это ваш сосед по комнате и по рабочей комнате Кит, который в стельку напивается в портах, когда команда сходит на берег, но всегда такой же собранный, как адмирал. Когда-нибудь он дослужится до высокого звания. «Время звонить капитану. Ты получил разрешение?»

«Есть, запросить разрешение на запуск реактора», - отвечает он, соблюдая все формальности.

Кит может быть вашим соседом по комнате на борту и на суше, и вы знаете, что он думает, прежде чем сделает что-либо, но вы должны соблюсти все формальности.

Просматривая инструкции

Пока вы ждёте, вы просматриваете инструкции. Это книга толщиной 12 сантиметров. Бумага - произведение инженерного искусства, она похожа на материал, из которою делаются конверты для доставки документов на большие расстояния. Вы открываете Инструкцию № 27 и просматриваете несколько абзацев. Слова знакомы вам так же, как слова Библии знакомы священнику.

Телефон звонит снова. «Вахтенный инженер».

«Это дежурный офицер. Запускайте реактор».

«Есть, запустить реактор», - отвечаете вы и кладёте трубку.

Вы берёте микрофон системы внутренней коммуникации 2МС с подставки, нажимаете кнопку и слушаете, как ваш голос, подобно гласу Бога, разносится по машинному отделению. Вы прибавляете громкость, чтобы вас было слышно сквозь шум турбин. Ваш голос звучит громче, потому что подлодка похожа на могилу, все отверстия закрыты. «Вахтенный контролёр машинного отделения, зайдите в комнату управления реактором».

Вы встаете и снимаете с шеи цепочку с ключом безопасности реактора. С его помощью вы открываете ящик под книжной полкой. Внутри него находятся три предохранителя, каждый размером с фонарик. Вы закрываете ящик и вешаете ключ обратно себе на шею. Вахтенный контролёр машинного отделения стоит перед дверью в комнату управления реактором вместе с офицером, отвечающим за движение судна.

«Разрешите войти в комнату управления реактором».

«Разрешаю». Вы передаете предохранители вахтенному контролёру машинного отделения и обращаетесь к нему формально.

«Вахтенный контролёр машинного отделения, вставьте предохранители в разъемы А, Б и В инвертора и отключите прерыватели, приостанавливающие работу реактора».

«Есть, поместить предохранители в разъемы А, Б и В инвертора и отключить прерыватели, приостанавливающие работу реактора». Он исчезает в передней части комнаты на несколько минут. Вы делаете запись в журнале вахтенного инженера и поднимаете глаза от бумаги, как только вахтенный контролёр машинного отделения возвращается. «Разрешите войти в комнату управления реактором».

«Разрешаю».

«Сэр, предохранители вставлены в разъёмы А, Б и В. Прерыватели А, Б и В, приостанавливающие работу реактора, выключены».

«Понял вас, спасибо, и удачного вам запуска».

Он хлопает оператора реактора по голове. «Следите за этим парнем, сэр. Никаких неполадок не должно быть за мою вахту».

Оператор реактора изрыгнул ругательство, не отрывая глаз от панели управления реактором. Вы занимаете позицию позади оператора реактора, откуда можете видеть всю панель. Вы делаете ещё одну запись в журнале вахтенного инженера: начинаем нормальный запуск реактора .

«Оператор реактора, начать нормальный запуск реактора».

«Есть, начать нормальный запуск реактора».

Вы берёте микрофон системы внутренней коммуникации 2МС и объявляете: «Начать нормальный запуск реактора».

Запускаем насосы

Оператор реактора встаёт и берёт в руку рычаг запуска основных охлаждающих насосов. «Запуск основного насоса № 4 на малой скорости». Он поднимает вверх Т-образный рычаг, и насос запускается. Загорается сигнальная лампочка, и индикатор давления подскакивает. «Запуск основного насоса № 3 на малой скорости». Он запускает следующий насос. Теперь 2 насоса работают на малой скорости в каждой из охлаждающих петель, раньше в каждой петле работало по одному насосу. «Работают два насоса на малой скорости».

«Понял вас».

«Контрольные тяги группы 3 зафиксированы», - объявляет оператор реактора. Он перемещает рычаг с надписью «инвертер» в позицию В. Затем он перемещает ручку переключателя управления тягами в центре нижней наклонной секции из положения «12 часов» в положение «9 часов». Одновременно он вытягивает ручку из панели примерно на 5 сантиметров. «Подключаю напряжение фиксатора к инвертору В».

Вы смотрите на дисплей напряжения фиксатора. Оно удваивается, когда ток с фиксатора из инвертора В течёт по направлению к держателю контрольных тяг группы 3. Перед этим держатели находились и открытом положении, но как только на них подали напряжение, когда ручка выключателя была выдвинута из панели, электромагниты каждого держателя зарядились и держатель надавил на резьбовую часть контрольной тяги. Чтобы убедиться в том, что держатели зафиксировались на резьбе, оператор вводит тяги внутрь реактора. Тяги в это время уже находятся на дне, но он вращает держатели до тех пор, пока они «поймают» резьбу.

«Тяги группы 3 зафиксированы».

«Понял вас».

«Поднимаю тяги в верхнюю часть активной зоны реактора», - объявляет он. Он встаёт и поворачивает ручку вправо.

Вы не сможете создать критическую массу в реакторе с помощью тяг группы 3. если только не произойдёт какой-нибудь серьёзной аварии, но вы всё равно смотрите на панель управления реактором, как ястреб.

«Лампочка, сигнализирующая, что тяги группы 3 оторвались от дна реактора, погасла», - сообщает оператор реактора.

Лампочка внешнего кольца нижних контрольных тяг гаснет, как только тяги перестают касаться дна реактора.

Показатели цифрового датчика повышаются, когда тяга поднимается вверх, когда группа тяг находится на высоте 60, 75, 87 сантиметров, пока, наконец, тяги не достигают вершины реактора. Одновременно вы наблюдаете за показателями уровня нейтронов и уровнем запуска реактора. Ничего особенного не происходит ни с одной из этих шкал. Если реактор был приостановлен в течение долгого времени, то уровень нейтронов будет настолько низок, что вам придется проводить запуск реактора по принципу «вытянуть и ждать». Вместо того, чтобы вытянуть тяги из активной зоны реактора, оператор вытягивает тяги на 3 секунды, а потом смотрит на показатели приборов остальные 57 секунд. Вы повторяете эту процедуру в течение следующих 5 часов, пока уровень реактора не возвратится в обычный диапазон.

Оператор реактора отпускает рычаг управления, только когда группа тяг достигает вершины активной зоны реактора. «Фиксирую группу 2», - говорит оператор реактора. Он переключает инвертор в положение Б и переводит переключатель в позицию «9 часов», вынимая его из панели. «Подаю напряжение на группу 2. Группа 2 зафиксирована».

«Понял вас». Группа 2 останется на дне активной зоны реактора, и она зафиксирована, чтобы в случае встряски они не подпрыгнули и не спровоцировали скачок мощности.

«Фиксирую группу 1». Он переводит переключатель инвертора в положение А и повторяет процедуру фиксации. «Вывожу группу 1 для достижения критической массы».

Вы в напряжении вглядываетесь в шкалу уровня нейтронов и шкалу уровня запуска.

«Лампа, показывающая, что группа 1 оторвалась от дна реактора, погасла».

Требуется немалое усилие, чтобы вынуть контрольные тяги из активной зоны реактора, но чтобы ввести внутрь, не нужно много силы. Это сделано умышленно: адмирал Риковер хотел, чтобы оператор реактора знал, когда он увеличивает мощность реактора. Во время долгого запуска руки оператора трясутся, когда он вынимает контрольные тяги из активной зоны. Рычаг управления контрольными тягами всегда возвращается в нейтральное положение, когда оператор убирает с него руку.

Первое покачивание стрелки уровня запуска реактора

Как только группа 1 выйдет за пределы активной зоны реактора, стрелка датчика уровня запуска реактора сдвинется с нулевой отметки и установится на уровне 0,2 декады в минуту. Оператор продолжает вытягивать тягу, пока стрелка не остановится на отметке 1 декада в минуту, и потом отпускает рычаг. Уровень запуска опускается до 0. Он вытягивает тягу снова, и уровень повышается до 1 декады в минуту. Стрелка на приборе, показывающем уровень нейтронов, постепенно поднимается, каждые несколько минут показывая изменения уровня на порядок (сначала 10–9, 10–8, 10–7 и так далее). Наконец, когда уровень запуска реактора достиг значения 10–1 в минуту, оператор переводит переключатель контрольных тяг в нейтральное положение. Уровень запуска реактора стабилизируется в районе 0,3 декады в минуту.

«Реактор достиг критической массы», - объявляет он, делая пометку в своем журнале. Расчетное значение критического состояния показало, что критическая масса будет достигнута на расстоянии 60 сантиметров. На самом деле это произошло на высоте 56,88 сантиметра. Совсем неплохо.

Вы берёте микрофон системы коммуникации 1МС, который расположен рядом с микрофоном 2МС. Теперь ваше объявление слышно во всех помещениях на борту подлодки.

«Реактор, - здесь вы делаете театральную паузу, - достиг критической массы!» Вы делаете ещё одну запись, и запуск продолжается.

«Вывожу группу 1 для перехода в рабочий режим», - говорит оператор реактора. Он опять хватает рычаг управления контрольными тягами и доводит уровень запуска до 1 декады в минуту. Уровень содержания нейтронов в активной зоне реактора медленно достигает рабочего уровня. Стрелка промежуточного режима тоже начинает подниматься, два режима совпадают на второй декаде. «Селекторный канальный переключатель уровня источника в стартовом режиме, приостановка отключена», - говорит он, вращая большой переключатель на панели.

«Понял вас», - подтверждаете вы. На этом этапе атомное оборудование снабжается энергией от селекторного канального переключателя уровня источника. Если бы на чувствительный детектор нейтронов питание подавалось значительно дольше, то он бы отказал из-за бомбардировки нейтронами. На этом этапе уже не может поступить сигнал на автоматическую приостановку реактора от датчика уровня начального запуска. Теперь защита осуществляется датчиком уровня промежуточного запуска. Если уровень превысит 9 декад в минуту, то реактор автоматически приостановится.

Теперь радиоактивности в реакторе достаточно, так что оператор мог вынуть контрольные тяги и установить уровень на отметке 1,5 декады в минуту. Когда он отпускает рычаг, то уровень падает до 1 декады в минуту. Теперь реактор начнет «просыпаться» сам, а вы просто наблюдаете за тем, как его уровень постепенно перейдет из стартового в промежуточный. В конце промежуточного режима находится рабочий режим. В рабочем режиме реактор способен повышать температуру охлаждающей жидкости.

Ближе к концу промежуточного режима уровень разогрева падает до 0. Оператор реактора вытягивает контрольные тяги и смотрит за показаниями приборов.

«Реактор вошёл в рабочий режим», - говорит он. Вы повторяете эти слова по системе коммуникации 2МС. «Нагрев основной охлаждающей жидкости до температуры зелёной зоны», - объявляет он.

Теперь, когда реактор вошел в рабочий режим, поднятие контрольных тяг повышает мощность реактора, вследствие чего происходит нагревание охлаждающей жидкости. Средняя температура охлаждающей жидкости или Т ср сейчас составляет 182 °C.

«Стабилизирую уровень разогрева реактора», - говорит он и кладет график поверх журнала записей.

Пока температура основной охлаждающей жидкости не установится в зеленой зоне, температура реактора при запуске может увеличиваться быстрее. Так как стартовая температура достаточно высока - 182 °C, мы можем разогреть реактор быстро. Если бы изначальная температура реактора была ниже, то его разогрев был бы ограничен несколькими сотыми градуса в минуту, а запуск занял бы гораздо больше времени.

Т ср - средняя температура основной охлаждающей жидкости, которая входит в реактор и покидает его. Если Т вх = 238 °C и Т вых = 260 °C, то Т ср = 249 °C. Т ср всегда должна находиться в зелёной зоне между 246 °C и 251,5 °C. Все исследования безопасности реактора велись из расчёта того, что Т ср находится в зелёной зоне. Если температура реактора будет при работе выходить из этого диапазона, то никто не даст вам никаких гарантий, что не произойдет аварии. Когда Т ср выходит из допустимого интервала, то оператор реактора вытягивает и снова вводит контрольные тяги для понижения или повышения Т ср. (В рабочем режиме мощность реактора зависит от притока пара. Оператор дросселей регулирует мощность реактора с помощью степени открытия дросселей, а контрольные тяги в данном случае лишь добавляют мощности в активную зону реактора, чтобы изменить Т ср.)

Разогреваем активную зону реактора

В течение следующих 30 минут, оператор разогревает активную зону реактора. Стрелка Т ср постепенно поднимается. Датчик уровня мощности реактора показывает между 0 и 5 % по мере того, как реактор разогревается.

«Т ср находится в зелёной зоне, сэр», - докладывает он.

«Понял вас. - Вы берёте переговорное устройство 2МС. - Вахтенный контролёр машинного отделения, зайдите в комнату управления реактором».

Вахтенный контролёр машинного отделения спрашивает разрешения зайти в комнату управления реактором. Вы знаком разрешаете ему войти, и вместе с ним смотрите на панель управления реактором. Затем отдаете ему приказ на запуск паровой установки: «Вахтенный контролёр машинного отделения, запустить основные паровые установки 1 и 2. Впустить пар в машинное отделение, разогреть основные паровые колодки, создать вакуум в основных конденсаторах по правому и левому борту, запустить турбины по правому и левому борту и прогреть основные двигатели по правому и левому борту».

Единственный раз вахтенный контролёр машинного отделения не повторяет приказ. Это исключение стало традицией.

Он исчезает, чтобы направиться в переднюю часть подлодки. Пока вы ждете, вы знаете, что он и вахтенные верхнего уровня машинного отделения открывают клапаны, через которые пар из паровых котлов сможет пройти и достигнуть больших перегородок перекрывающих клапаны MS-1 и MS-2. Это понизит перепад давления в клапанах, и их будет легче открыть. Когда разница в давлении становится менее 3,3 атм, вахтенный контролёр машинного отделения и вахтенные верхнего уровня машинного отделения начнут открывать клапана MS-1 и MS-2. Открытие каждого клапана займёт добрых 5 минут.

«Датчик показывает открытие клапана MS-2», - говорит оператор реактора. Лампочка на его панели сменила форму с продолговатой на круглую. Через несколько минут он объявляет об открытии клапана MS-1.

Поднимается шум. Паровая колодка начинает нагреваться, и вода в ней, образовавшаяся в результате конденсации, выдувается наружу давлением пара. Шум, который вы слышите, это вахтенный контролёр машинного отделения, и вахтенные верхнего уровня машинного отделения продувают паровые сифоны, устройства, которые не допускают конденсат - капли воды - в паровые колодки. После 10 минут продувания колодок вахтенный контролёр машинного отделения и вахтенные нижнего уровня машинного отделения создают вакуум в конденсаторах.

Они запускают основные насосы системы подачи морской воды по правому и левому борту, а потом используют давление пара вспомогательной паровой системы, чтобы выкачать воздух из конденсаторов. Конденсация пара вызывает вакуум: пар занимает гораздо больший объем, чем жидкость, поэтому в конденсаторах и возникает ваккум. Но в начале цикла в трубах содержится очень много воздуха, а воздух не конденсируется. С помощью специальных устройств с вентиляционными трубами, выдувателей воздуха, пар пропускается через эти трубы для создания низкого давления. Вследствие этого воздух высасывается из конденсаторов и поступает в машинное отделение. Как раз эти выдуватели воздуха и сделают машинное отделение радиоактивным, как если бы вы использовали реактор, в котором вода находится в кипящем состоянии, или если бы у вас произошла утечка охлаждающей жидкости из первичной во вторичную петлю охлаждения.

Скоро вахтенный контролёр машинного отделения возвращается на верхний уровень машинного отделения и начинает раскручивать турбинный генератор по левому борту. Вы услышите, когда турбина начинает вращаться. Сначала она громыхает. Затем рычит, стонет и кричит, как реактивный самолет, Звук поднимается до оглушительного визга и, наконец, превращается в вой, пока частота не поднимается до пронзительного свиста.

Вахтенный контролёр машинного отделения появляется в дверном проёме и говорит: «Турбинный генератор по левому борту запущен и готов принять нагрузку».

Переключаем электроустановку

Время переключить электроустановку. «Электрооператор, - говорите вы, - переключить электроустановку на половинную мощность от турбинного генератора». Оператор подтверждает получение приказа и затем подключает свой синхроскоп к прерывателю турбинного генератора. Он будет манипулировать напряжением и частотой в прерывателе вспомогательного турбинного генератора на его внешней шине питания. Две шины питания должны быть синхронизированы. Это значит, что переменный ток, напряжение которого то падает, то возрастает, должен иметь одинаковое значение с обеих сторон прерывателя. Измеритель сравнивает частоту переменного тока с обеих сторон прерывателя, а стрелка медленно поворачивается в сторону указателя «быстро». Если частота вспомогательного турбинного генератора будет выше, то генератор замедлится, когда примет на себя нагрузку. Когда стрелка становится в положение «12 часов», оператор электроустановки поворачивает ручку управления прерывателем, и прерыватель вспомогательного турбинного генератора закрывается. Он делает так, чтобы перераспределить нагрузку основного генератора на вспомогательный.

«Электроустановка работает на 50 % мощности и соединена с вспомогательным турбинным генератором».

Вы делаете такое же объявление по системе 2МС. Вахтенный контролёр машинного отделения исчез на нижнем уровне машинного отделения, чтобы запустить основной подающий насос. Уровень мощности парового генератора понижается с тех пор, как он открыл клапаны MS-1 и MS-2. Вы слышите, как запускают насос, и индикаторы уровня воды в паровом генераторе на панели управления паровым генератором опять вернулись в нормальное положение.

Вскоре вахтенный контролёр машинного отделения запускает турбину по правому борту и докладывает, что она готова принять нагрузку. После проделывания той же операции на панели управления электроустановкой оператор докладывает, что установка готова к работе на полную мощность.

Вы командуете оператору электроустановки открыть прерыватель берегового электропитания.

«Оператор электроустановки, - командуете вы, - отсоединить кабели берегового питания». Они электрик забираются в люк доступа к кабелям и отсоединяют их. Когда они закончили, вы связываетесь с дежурным офицером и докладываете, что береговое питание отключено. Затем вы спрашиваете разрешения на то, чтобы раскрутить вал для разогрева основных двигателей. Он разрешает.

Кабели слишком тяжёлые, чтобы поднимать их вручную. Для того, чтобы выгрузить их с борта подлодки, приходится использовать кран.

Открываем дроссели

Вахтенный контролёр машинного отделения запускает турбины основных двигателей и передает управление ими офицеру, отвечающему за движение судна. В течение следующих 8 часов он будет открывать дроссели каждые несколько минут, чтобы поддерживать основные двигатели прогретыми. Так как в этом процессе задействовано сцепление, вал проворачивает винт на полоборота, но это допустимо, потому что большой нагрузки на швартовочные канаты при этом не возникает.

Вы закончили. Теперь реактор работает примерно на 18 % своей мощности, а Т ср находится в зеленой зоне около 249 °C. Теперь вам остается только ждать, пока вас сменят, и вы сможете отправиться на собрание офицеров, а потом на мостик, чтобы вести подлодку в море. Вы зеваете и принимаете чашку кофе от вахтенных верхнего уровня машинного отделения.

Минимум того, что вам нужно знать:

Помощник капитана - самый занятой человек на борту подлодки.

Главный инженер несёт ответственность за работу ядерного реактора.

Номинальный и нормальный - не одно и то же, на подлодке нет ничего нормального.

Вахтенный инженер полностью несёт ответственность за безопасность реактора и за общую безопасность в хвостовой части подлодки.

Отсоединение кабелей берегового питания - последний шаг перед тем, как подлодка становится полностью независимой от берега.

Из книги Чудо-оружие СССР. Тайны советского оружия [с иллюстрациями] автора Широкорад Александр Борисович

Глава 3. Атомный проект После краткого очерка о работе шарашек, которыми Берия руководил лишь в качестве наркома, перейдем к проектам, в которых Берия был непосредственным руководителем и лично отвечал за их ход. Тут есть и еще одно принципиальное различие. До 1945 г. в

Из книги Чернобыль. Как это было автора Дятлов Анатолий Степанович

Глава 11. Суд Суд как суд. Обычный советский. Всё было предрешено заранее. После двух заседаний в июне 1986 г. МВТС под председательством академика А. П. Александрова, где доминировали работники Министерства среднего машиностроения - авторы проекта реактора, была объявлена

Из книги Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли автора Апальков Юрий Валентинович

Тяжелый атомный авианесущий крейсер Ульяновск пр. 11437 ОСНОВНЫЕ ТТЭВодоизмещение, т:– стандартное 65 800– полное 75 000Главные размерения, м:– длина наибольшая (по КВА) 321,2 (274,0)– ширина корпуса наибольшая (по КВА) 42,0 (40,0)– ширина с угловой полетной палубой 83,9– осадка средняя

Из книги Взрыв и взрывчатые вещества автора Андреев Константин Константинович

Тяжелый атомный ракетный крейсер Киров пр. 1144 – 1(1) ОСНОВНЫЕ ТТЭВодоизмещение, т:– стандартное 24 100– полное 24 400Главные размерения, м:– длина наибольшая (по ВЛ) 251,0 (228,0)– ширина корпуса наибольшая (по ВЛ) 28,5 (24,0)– осадка средняя 10,33Экипаж (в т. ч. офицеров), чел 727

Из книги Шелест гранаты автора Прищепенко Александр Борисович

7. Атомный взрыв Взрывы, которые мы рассматривали в предыдущих разделах, основаны на различных химических реакциях, идущих с выделением тепла, главным образом на реакциях горения.Однако количество тепла, выделяющегося при этих химических реакциях, относительно невелико

Из книги Четыре жизни академика Берга автора Радунская Ирина Львовна

2.4. Ядерный реактор торпеды: запустить быстрее! День защиты дипломной работы приближался. В ней не упоминалось о датчике приземного срабатывания: тогда надо было описывать и все подробности его применения, с приведением данных о мощности боевых блоков, защищенности шахт

Из книги Подводные лодки автора ДиМеркурио Майкл

Глава 1 КОРНИ СУДЬБЫОПЕРАЦИЯ «ЧЕРВЬ»Оренбург конца XIX века. Маленькие деревянные дома. По узким улочкам бродят беспризорные куры, задумчиво жуют чахлую придорожную траву меланхоличные козы. Петляя в пыли, улочки сходятся в центре города у большого красивого дома. Для

Из книги автора

Глава 6 ВСТУПЛЕНИЕВ СУДЬБУШТУРМПеред боевым командиром, лишившимся возможности продолжать службу не только на подводных лодках, но и на надводных военных кораблях, было два проторенных пути. Первый - продолжать службу в штабах или управлениях. Второй путь -

Из книги автора

Глава 1 ВОЗВРАЩЕНИЕВЫ ВЕРИТЕ?!Чудеса случаются во все времена. После томительных трех лет подозрений и недоверия - реабилитация.Наступила тяжелая, странная пора. Тысяча дней прокатились через жизнь Берга, и каждый день разрывал его душу и сердце. Волны раздирающих мозг

Из книги автора

Глава 2 НА ПЕРЕДОВОЙПЕРЕЛОМ1943 год начинался в новых условиях. Потери немцев под Сталинградом: 175 тысяч убитых и 137 тысяч пленных, 23 дивизии в окружении - эти цифры потрясли весь мир. Громадный успех менял всю обстановку на фронтах. Оживились даже союзники. Италия

Из книги автора

Глава 3 СЛОЖНЫЙФАРВАТЕРС МЕРТВОЙ ТОЧКИКак будет развиваться дальше эта необычная и обыденная история? История, так похожая на те, что разыгрываются вокруг нас и с нами в повседневной и всегда такой неповторимой жизни.События в личной жизни Берга назревали.В наркомате

Из книги автора

Глава 2 ПАРАЛЛЕЛИУГЛУБЛЯЮТСЯЧЕМ НЕ ГОЛЕМ!Когда советские кибернетики перестали тратить часть усилий на споры, а сосредоточились на своих прямых обязанностях, их детища - кибернетические машины начали делать быстрые успехи.Электронные машины взбираются все выше по

Из книги автора

Глава 4 ВСТРЕЧА НА ВЕРШИНЕРОЗЫ И РЫБАЧитаешь «Проблемные записки», и бросается в глаза органическое переплетение многочисленных научных направлений, тесное содружество разных секций. Секция бионики, например, изучает живые организмы с целью перенесения в технику

Из книги автора

Глава 5 САМЫЙ СЧАСТЛИВЫЙ ДЕНЬПРАВЫ ЛИ ЙОГИ!Мальчишка, чтобы сделать снежную бабу, скатал в ладонях маленький комок снега, бросил его на землю, покатил, и комочек стал расти, наслаиваясь новыми снежными пластами. Катить его труднее и труднее… Мальчишка вытирает варежкой

Из книги автора

Часть 2 Атомный век Если придерживаться определения подлодки как «погрузившееся судно, независимое от поверхности», то первой настоящей подлодкой была атомная подлодка «Наутилус». Это было одним из самых больших достижений науки в XX веке: путь из пункта А (Энрико Ферми

Из книги автора

Глава 8 Вступая в атомный век В этой главе Время распада атома. Строительство силовых установок. Монтаж силовой установки на подлодку. Идеальный испытательный стенд.Радиоактивные или молекулярно нестабильные элементы были впервые открыты в 1895 году, когда Уильям

В последние годы в ВМС ведут капиталистических стран стали широко применяться ядерные энергетические установки (ЯЭУ). Успехи в области ядерной энергетики позволили создать в этих странах ЯЭУ, пригодные по своим весовым и габаритным показателям для подводных лодок, что превратило их из «ныряющих» в подлинно подводные корабли. По сообщениям зарубежной печати, такие лодки проходят под водой огромные расстояния со скоростью хода 30 и более узлов, не всплывая по 60 - 70 суток.

Оснащение надводных кораблей ядерными энергетическими установками резко увеличило их боевую эффективность и коренным образом изменило взгляды на использование флота. По мнению зарубежных специалистов, надводные корабли с такими установками, кроме практически неограниченной дальности плавания на различных скоростях хода, имеют следующие преимущества: исключается прием обычного топлива (атомные авианосцы могут увеличить запасы авиационного топлива или принять топливо для кораблей охранения); облегчается герметизация корпуса и улучшается защита корабля от оружия массового поражения, поскольку для работы ЯЭУ не требуется воздух; упрощается расположение помещений и улучшается тепловая защита, поскольку нет дымовых труб и дымоходов; уменьшается коррозия антенн радиоэлектронных средств и фюзеляжей самолетов (на авианосцах) в связи с отсутствием дымовых газов.

Оснащение надводных кораблей ЯЭУ увеличивает степень их готовности и сокращает время перехода в район боевых действий. В результате боевая эффективность кораблей повышается приблизительно на 20 проц.

Ракетные подводные лотки и надводные корабли с ЯЭУ предназначены для осуществления агрессивных замыслов милитаристских кругов стран , направленных против СССР и стран социалистического содружества.

По сообщениям американской печати, первая ЯЭУ была установлена на атомной подводной лодке «Наутилус», введенной в состав флота в 1954 году. К 1961 году американский флот имел 13 подводных лодок, оснащенных ЯЭУ, а в настоящее время в составе ВМС США, Великобритании и Франции насчитывается 119 атомных ракетных и торпедных подводных лодок, а 13 атомных подводных кораблей находятся в постройке.

Как сообщает зарубежная печать, основным типом лодочных ЯЭУ является реактор S5W, которым оснащаются в основном как ракетные, так и торпедные подводные лодки (рис. 1). В состав его паропроизводяшего блока входят водо-водяной реактор под давлением с двумя автономными петлями первого контура, два парогенератора, семь циркуляционных насосов, включенных по три на каждый парогенератор (с одним резервным на оба борта), система компенсации объема, а также другие вспомогательные агрегаты и системы.

Этот реактор фирмы «Вестингауз электрик» относится к классу гетерогенных реакторов на тепловых нейтронах. В 1961 году после некоторого повышения мощности и увеличений кампании активной зоны ему был присвоен шифр S5W2. Тепловая мощность модифицированного реактора (диаметр 2,45 м., высота 5,5 м.) составляет около 70 МВт, давление в первом контуре 100 кг/см2, температура теплоносителя на выходе из реактора 280°С.

В активной зоне реактора S5W2 применяются пластинчатые тепловыделяющие элементы с 40-процентным обогащением. Кампания активной зоны составляет 5000 ч., что обеспечивает атомным подводным лодкам дальность плавания полным ходом 140000 миль, а экономическим ходом 400 000 миль. Календарный срок использования активной зоны 5 - 5,5 лет.
Главный турбозубчатый агрегат (мощность на валу 15 000 л. с.) состоит из двух турбин, которые работают через двухступенчатый зубчатый редуктор на один гребной вал с малошумным гребным винтом. Давление пара перед маневровым устройством достигает 23 кг/см2, а температура 240° С.

Два автономных синхронных турбогенератора мощностью по 1800 кВт являются основными источниками электроэнергии. Они вырабатывают переменный трехфазный ток (частота 60 Гц, напряжение 440 В). Аккумуляторная батарея емкостью 7000 А.ч (режим разрядки 5 ч.), состоящая из 126 свинцово-кислотных элементов, и дизель-генератор постоянного тока мощностью 500 кВт служат резервными источниками питания. В состав электрооборудования ЯЭУ входит также тихоходный электродвигатель постоянного тока, включенный в линию вала. В режиме движения подводной лодки с минимальным шумоизлучением гребной электродвигатель работает через обратимый преобразователь от турбогенератора, а в аварийных случаях - от дизель-генератора или аккумуляторной батареи. Кроме того, на американских атомных подводных лодках установлены два асинхронных электродвигателя погружного типа с трехлопастными гребными винтами в насадке, которые выдвигаются из легкого корпуса на баллерах и используются главным образом как подруливающие устройства.

Ядерной энергетической установкой оснащаются атомные подводные лодки подводным водоизмещением 3500 - 8230 т. (скорость хода до 30 узлов).

По сообщениям зарубежной печати, в ВМС США накоплен опыт эксплуатации ЯЭУ с жидкометаллическим теплоносителем. Реактор S2G с жидким натрием в первом контуре для второй атомной подводной лодки ВМС США разрабатывался почти одновременно с водо-водяным реактором S2W. В реакторе S2G и его наземном прототипе SIG ядерным горючим служил высокообогащенный уран, а замедлителем - графит.

Опытная эксплуатация реактора S2G, как сообщалось в иностранной печати, выявила бесперспективность ЯЭУ с жидкометаллическим теплоносителем. Командование ВМС США, считая, что возможность утечки радиоактивного жидкометаллического сплава представляет большую опасность для личного состава корабля, сделала свой выбор в пользу водо-водяного реактора. Реактор S2G на подводной лодке «Сивулф» (прошла 71611 миль) был заменен в течение 1959 года реактором S2W.

По данным зарубежной печати, ядерные энергетические установки, применяемые в настоящее время на подводных лодках ВМС Великобритании и Франции, по типу, основным параметрам и компоновочной схеме подобны американской установке S5W. Первая английская атомная подводная лодка «Дредноут» была оснащена ЯЭУ, спроектированной и изготовленной фирмой «Роллс-Ройс» при технической помощи американских специалистов, а реактор S5W поставила фирма «Вестннгауз электрик». Установка серийных атомных подводных лодок типа и разрабатывалась и изготовлялась уже целиком английской промышленностью без привлечения фирм США. Она включает реактор типа S5W и главный турбозубчатый агрегат (мощность на валу 15 000 л. с.), работающий на одну линию вала с шестилопастным гребным винтом. Для новой атомной торпедной подводной лодки типа была создана более мощная ЯЭУ, реактор которой имеет усовершенствованную активную зону с повышенным сроком службы.

На первой атомной ракетной подводной лодке ВМС Франции вначале предполагалось использовать реактор с тяжеловодным замедлителем. Однако в ходе проектирования корабля от этого замысла отказались, и на все лодки типа устанавливается стандартная одновальная ЯЭУ мощностью 15 000 л. с. (рис. 2). Французские реакторы в отличие от американских и английских работают на уране при 93,5-процентном обогащении.

В настоящее время в атомном центре Кадараш () создается ЯЭУ для атомных торпедных подводных лодок, строительство которых начнется в ближайшие годы.

Одной из главных задач в области атомного подводного кораблестроения американские специалисты считают создание ЯЭУ с низкими уровнями шумоизлучения. Уже в процессе разработки реактора S5W были приняты меры по обесшумливанию механизмов установки (главным образом за счет уменьшения напряженности их работы, повышения точности обработки деталей и монтажа). Однако эти меры не дали существенных результатов. Поиски принципиально нового подхода к решению этой важной проблемы привели к созданию энергетической установки с электродвижением, которая была испытана на атомной подводной лодке , построенной в 1960 году. ЯЭУ этого опытного корабля имеет небольшой реактор типа S2C, два турбогенератора и гребной электродвигатель мощностью 2500 л. с. Турбоэлектрическая передача мощности на гребной вал позволила значительно снизить шумность установки за счет исключения зубчатого редуктора и упростить систему ее управления, обеспечив возможность быстрого изменения направления и частоты вращения гребного винта. Но применение электродвижения ведет к увеличению веса и объема установки, а также к снижению ее экономичности.

Как сообщала американская печать, в начале 1966 года в США приступили к постройке опытной атомной подводной лодки с реактором S5G, имеющим повышенный уровень естественной циркуляции теплоносителя в первом контуре. Атомная подводная лодка «Нарвал» быта введена в состав ВМС США в 1969 году. Её водоизмещение 5350 т., мощность ЯЭУ 17 000 л. с., скорость хода 30 узлов. По мнению американских специалистов, исключение из состава оборудования первого контура больших циркуляционных насосов устраняет один из основных источников шума ЯЭУ, а также повышает надежность установки и упрощает ее обслуживание.

В настоящее время в США заканчивается строительство опытной атомной подводной лодки «Гленард П. Липскомб» На ней использован реактор с естественной циркуляцией теплоносителя S5WA (усовершенствованный S5G) и турбоэлектрическая силовая установка.

По данным зарубежной печати, надводные корабли с ЯЭУ строятся только в США. На них также используются водо-водяные реакторы под давлением, созданные фирмами «Вестингауз электрик» и «Дженерал электрик». Однако в отличие от атомных подводных лодок на этих кораблях не получила распространения унифицированная энергетическая установка. Для каждого типа корабля проектируется новая ЯЭУ при сохранении по возможности основного стандартного оборудования.

В американской печати сообщалось, что ударный авианосец (флагман атомного надводного флота США), вступивший в строй в конце 1961 года, оснащен четырехвальной ЯЭУ (общая мощности 28000 л. с.) с восемью реакторами тина A2W, расположенными в четыре эшелона. Пар, вырабатываемый в каждом паропроизводяшем блоке, скомпонованном по двухпетлевой схеме, поступает на одну главную турбину и два турбогенератора мощностью по 2500 кВт. В состав ЯЭУ атомного крейсера входят два реактора типа C1G, четыре главные турбины, работающие попарно через понижающие зубчатые редукторы на две линии вала, и шесть турбогенераторов. Суммарная мощность энергетической установки 160 000 л. с., скорость полного хода корабля 35 узлов. Двухвальная ЯЭУ фрегатов УРО «Тракстан» и «Бейнбридж» включает два реактора типа D2G, два главных турбозубчатых агрегата суммарной мощностью 60 000 л. с. и пять турбогенераторов мощностью по 2500 кВт.

На всех атомных надводных кораблях ВМС США предусмотрена вспомогательная котельная установка и запас топлива к ней.

В настоящее время для ВМС США строятся два атомных ударных авианосца типа и пять атомных фрегатов: два типа и три типа «Виргиния». Их энергетические установки будут иметь новые реакторы, более мощные главные турбозубчатые агрегаты и улучшенное электрооборудование.

Зарубежные военно-морские специалисты считают, что ЯЭУ надводных кораблей имеют слишком высокий удельный вес (45 - 55 кг/л.с.) по сравнению с паротурбинными установками той же мощности (12 - 18 кг/л.с. без учета запаса топлива). Это одна из причин, препятствующих внедрению ЯЭУ на корабли класса «эскадренный миноносец».

ЯЭУ непрерывно развиваются и совершенствуются. Большой размах научно-исследовательские и опытно-конструкторские работы приобрели в США, где строятся экспериментальные и опытовые корабли для проверки новых технических решений, направленных на улучшение характеристик ЯЭУ.

Развитие корабельных ЯЭУ, по мнению американских военно-морских специалистов, идет в следующих основных направлениях: увеличение кампании активной зоны и глубины выгорания топлива, снижение уровней шумоизлучения, повышение надёжности.

Командование ВМС США с самого начала создания атомного флота уделяет внимание вопросам увеличения срока службы активной зоны, а также повышения надежности всей установки, поскольку эти характеристики влияют на оперативное использование атомных кораблей. Однако, первые активные зоны со значительно увеличенной кампанией были созданы лишь к 1961 году. Ударный авианосец «Энтерпрайз» после первой загрузки ядерным топливом прошел 207 000 миль, после втором - более чем 500 000 миль. Во время капитального ремонта в его реакторы была установлена активная зона новой конструкции с календарным сроком службы 10 - 13 лет.

По сообщениям зарубежном печати, в США, и Японии имеются, а в Великобритании, Франции, Италии и Нидерландах разрабатываются ЯЭУ также и для судов торгового флота, что позволит в процессе эксплуатации выявить их достоинства и недостатки, которые впоследствии можно будет учесть при проектировании ядерных реакторов для военных кораблей.

В последние годы наметился новый путь в развитии ЯЭУ. Для кораблей атомного флота США созданы и разрабатываются ядерные реакторы мощностью 100 тыс. л.с. и более. Например, два реактора ударного авианосца «Нимитц» обладают такой же мощностью, как и восемь реакторов ударного авианосца «Энтерпрайз». Большую мощность будут иметь реакторы скоростных лодок типа и лодок ракетной системы морского базирования .

При разработке новых ЯЭУ специалисты стремятся также сократить время, затрачиваемое на перегрузку активных зон реакторов, усовершенствовать конструкцию отдельных узлов энергетической установки и уменьшить её габариты.

По сообщениям зарубежной печати, в западных странах наряду с развитием ЯЭУ, имеющих водо-водяные реакторы под давлением, создаются энергетические установки с реакторами других типов, из которых наиболее перспективными считаются кипящие реакторы и реакторы с газовым охлаждением.

Разработки кипящих реакторов с водяным теплоносителем ведутся преимущественно в США. Попытки в создании ЯЭУ с высокотемпературными газовыми реакторами имеет , где недавно разработан проект одноконтурной ядерной газотурбинной установки для глубоководной ракетной подводной лодки стандартным водоизмещением 3600 т. Зарубежные военно-морские специалисты считают одной из особенностей предлагаемой установки применение турбогенераторов и гребного электродвигателя со сверхпроводящими обмотками, что позволит уменьшить габариты и вес установки на 80-85 проц. и повысить экономичность электропередачи. Предполагается, что при реализации проекта можно будет обеспечить к.п.д. установки около 30 проц., а в дальнейшем довести его до 42 проц. (к.п.д. ЯЭУ с водо-водяными реакторами меньше 28 проц.).

По сообщениям зарубежной печати, техническое осуществление всех проектов корабельных ядерных газотурбинных установок с газоохлаждаемымн реакторами встречает большие трудности.

Как утверждают зарубежные военно-морские специалисты, в капиталистических странах, ВМС которых действуют в акватории Мирового океана, ведется строительство только атомных подводных лодок. Надводные корабли с ЯЭУ строятся пока только в США. Высказывается мнение, что единственным типом корабельных ядерных реакторов в ближайшие годы останется водо-водяной реактор с принудительной и естественной циркуляцией теплоносителя в первом контуре.

МОСКВА, 7 авг — РИА Новости. В России впервые создана и испытана активная зона — "сердце" ядерных реакторов атомных подводных лодок с ресурсом на весь жизненный цикл АПЛ, то есть не требующая перезарядки ядерного топлива, говорится в публичном годовом отчете предприятия госкорпорации "Росатом" АО "ОКБМ Африкантов" (Нижний Новгород) за 2017 год, размещенном на сайте предприятия.

Активная зона — содержащая ядерное топливо центральная область реактора, в которой происходит управляемая цепная реакция. "ОКБМ Африкантов" — головной разработчик активных зон для кораблей ВМФ.

"Завершена разработка, изготовление и были проведены межведомственные испытания двух транспортных активных зон — оптимизированной активной зоны для АПЛ 4 поколения проекта с кампанией до среднего ремонта корабля и уникальной в отечественной истории активной зоны с ресурсом на весь жизненный цикл корабля", — говорится в отчете.

Успешная эксплуатация активных зон ядерных реакторов АПЛ четвертого поколения подтверждает правильность проектных решений, на которых базируются новые проекты корабельных активных зон, отмечается в отчете.

К российским атомным подводным лодкам четвертого поколения относятся субмарины проектов "Борей" и "Ясень".

Боеготовность ВМФ

Новая разработка специалистов российской атомной отрасли в области реакторных установок для атомных подводных лодок, позволяющая обходиться без перезарядки ядерного топлива на все время эксплуатации субмарин, значительно повысит боеготовность отечественного Военно-морского флота, считают опрошенные РИА Новости военные эксперты.

"Это принципиальный вопрос, который имеет колоссальное значение для боеготовности подводных сил ВМФ, потому что "операция номер один", как мы ее называем на флоте, занимает более месяца, во время которого атомная боевая единица выводится из состава флота", — сказал агентству бывший командующий Северным флотом адмирал Вячеслав Попов.

Он пояснил, что в зависимости от проекта лодки и режима ее эксплуатации перезарядка реактора происходит раз в 5-10 лет. Время перезагрузки ядерного топлива составляет примерно месяц.

"На это время боевой состав флота сокращается на единицу. С таким же реактором коэффициент использования подводной лодки повышается в разы", — сказал адмирал.

Экономическая выгода

Разработка Росатома обеспечивает и большую экономическую выгоду, в свою очередь отметил бывший командующий Балтийским флотом адмирал Владимир Валуев.

"Этот реактор — мечта подводников", — подчеркнул он.

"Срок службы подлодки не менее 30 лет. Создание реактора, который может работать без перезарядки ядерным топливом на протяжении всего жизненного цикла подлодки, выгодно экономически. Замена реактора — дорогостоящий процесс. Его нужно выгрузить, поместить в защитную свинцовую емкость, отвезти к месту утилизации. Но с "вечным" реактором подлодка будет при той же боеспособности стоить дешевле", — сказал Валуев РИА Новости.

"ОКБМ Африкантов" — одно из ведущих предприятий российской атомной отрасли, входит в машиностроительный дивизион Росатома холдинг "Атомэнергомаш". "ОКБМ Африкантов" занимает ведущие позиции в создании реакторных установок различного типа и назначения, тепловыделяющих сборок и активных зон ядерных реакторов.

Похожие статьи

© 2024 choosevoice.ru. Мой бизнес. Бухгалтерский учет. Истории успеха. Идеи. Калькуляторы. Журнал.