Формальное планирование и оценка валидности как условия установления экспериментального эффекта. Планирование психологического эксперимента Когда возникло планирование эксперимента

Планирование эксперимента – это область математической статистики, ставящая своей целью выбор количества и условий постановки экспериментов, необходимых и достаточных для решения задачи с требуемой точностью, разработку методов и приемов математической обработки результатов эксперимента и принятия на основе этого определенных решений.

Что дает планирование экспериментатору? Принципиально иное отношение к ошибке. Рандомизация. Последовательный эксперимент. Оптимальное использование пространства независимых переменных. Редукция информации. Этическая функция планирования эксперимента. Планирование эксперимента и логика вопросов.

Какова стратегия эксперимента? 1. Признание факта существования задачи и ее формулировка. 2. Выбор факторов и уровней. 3. Выбор переменной отклика. 4. Выбор плана эксперимента. 5. Проведение эксперимента. 6. Анализ данных. 7. Выводы и рекомендации.

Аналогия между вычислительным и лабораторным экспериментами. Лабораторный эксперимент Образец Вычислительный эксперимент Модель Прибор Измерение Программа для компьютера Тестирование программы Расчет Анализ данных Калибровка

ПЕРВИЧНАЯ СТАТИСТИЧЕСКАЯ ОБРАБОТКА ОПЫТНЫХ ДАННЫХ Средняя арифметическая Ma= y/m=(y 1+y 2+. . . +yi+. . . +ym)/m Средняя геометрическая Mg=(yi)1/m=(y 1 y 2. . . yi. . . ym)1/m Средняя квадратическая Ms=(yi 2/m)1/2=((y 12+y 22+. . . +yi 2+. . . +ym 2)/m)1/2 Средняя гармоническая Mgr=m(yi– 1)– 1 Мода Медиана Md=y(m+1)/2 Md=(ym/2+1)/2

Дисперсия воспроизводимости Sj 2= (yij-yсрj)2/(m-1)= =((y 1 j-yсрj)2+(y 2 j-yсрj)2+. . . +(ymj-yсрj)2)/(m-1) Среднее квадратическое отклонение Sj=(Sj 2)1/2=((Yij-Yсрj)2/(m-1))1/2 Коэффициент вариации V=Sj/Yсрj · 100% Размах R=Ymaxj – Yminj Доверительный интервал для среднего B = yсрj t Sj/((m)1/2)

Количество повторных измерений m=(V 2) (t 2)/(T 2) Коэффициент вариации (V, %), Показатель точности (относительная ошибка T, обычно 5%), Показатель достоверности (t – критерий Стьюдента). m=(V 2) (t 2) (1 1/(2 m 1)1/2)2/(T 2) Нижний и верхний пределы для дисперсии =m– 1; =95%; =5%

Исключение грубых промахов По критерию Романовского |ym+1 –yср| t" Sy По критерию Q Q=|ym-ym-1|/|ym-y 1| Проверка однородности дисперсий F=S 21/S 22 – критерий Фишера; G – критерий Кохрена B/C – критерий Бартлетта (по χ2)

Проверка различия средних значений большая выборка малая выборка Сравнение нескольких средних с использованием критерия Дункана Производится ранжирование средних. Вычисляется значение дисперсии воспроизводимости с числом степеней свободы =n (m– 1).

Вычисляется нормированная ошибка среднего S=(Sa 2/m)0. 5 Выписываются значения (n– 1) значимых рангов из таблицы Дункана при числе степеней свободы, уровне значимости и p=2, 3, …, n. Наименьшие значимые ранги (НЗР), вычисляются как произведение рангов на нормированную ошибку среднего S. Проверяются разности между средними, начиная с крайних; эта разность сравнивается с НЗР при p=n, затем находится разность максимального среднего и первого, которое превосходит минимальное, и сравнивается с НЗР при p=n– 1 и т. д.

ВЫБОР ПАРАМЕТРОВ ОПТИМИЗАЦИИ И ФАКТОРОВ Требования к отклику: 1. Отклик (параметр оптимизации) должен быть эффективным с точки зрения достижения цели. 2. Отклик должен быть универсальным, т. е. всесторонне отражать свойства процесса. 3. Отклик должен быть количественным и выражаться одним числом. 4. Отклик должен быть статистически эффективным, т. е. иметь небольшую дисперсию. 5. Желательно, чтобы параметр оптимизации имел физический смысл, был простым и легко вычисляемым.

Требования к факторам: 1. Факторы должны быть управляемыми, т. е. такими, чтобы внутри области определения фактору можно было бы придать любое значение. 2. Факторы должны быть совместимы. Это означает, что любая комбинация уровней внутри областей определения может быть реализована. Факторы несовместимы, если некоторые комбинации уровней приводят к остановке процесса (например, в результате взрыва и т. п.). 3. Точность установления уровней факторов должна быть выше точности фиксирования значений параметра оптимизации.

ВЫДЕЛЕНИЕ СУЩЕСТВЕННЫХ ПЕРЕМЕННЫХ НА ОСНОВЕ АПРИОРНОЙ ИНФОРМАЦИИ Коэффициент ранговой корреляции Спирмэна =cov(x, y)/((S 2 x S 2 y)0. 5)=1– 6 ((xi–yi)2)/(n 3 -n) Коэффициент корреляции рангов Кендалла

Квадрат Юдена 1 2 3 4 5 6 7 1 A B C D E F G 2 B C D E F G A 3 D E F G A B C 1 2 1 3 1 2 3 1 2 2 2 1 2 3 A B C D E F G Σ 5 6 9 3 7 8 4

ЭКСПЕРИМЕНТАЛЬНО-СТАТИСТИЧЕСКИЕ МЕТОДЫ ВЫДЕЛЕНИЕ СУЩЕСТВЕННЫХ ПЕРЕМЕННЫХ Полный факторный эксперимент Переход от натурального масштаба переменной к условному ПФЭ 22 х1 х2 (1), a, b, ab -1 +1 -1 yр=b 0+b 1 x 1+b 2 x 2+b 12 x 1 x 2

+1 -1 -1 +1 Z= +1 +1 4 0 0 0 +1 +1 -1 -1 -1 +1 0 4 0 0 Z’= Z’Z= +1 -1 -1 -1 +1 +1 0 0 4 0 +1 +1 +1 -1 -1 +1 0 0 0 4 b 0=(y 1+y 2+y 3+y 4)/4; b 2=(–y 1–y 2+y 3+y 4)/4; b 1=(–y 1+y 2–y 3+y 4)/4; b 12=(y 1–y 2–y 3+y 4)/4.

Организация эксперимента и проведение расчетов реализуются в следующей последовательности. 1. Выбор уровней варьирования факторов. 2. Построение плана эксперимента и матрицы планирования. 3. Проведение экспериментальных измерений. 4. Вычисление коэффициентов линейной модели. 5. Проверка значимости коэффициентов модели. 6. Проверка содержательности модели. 7. Проверка адекватности модели. 8. Проверка предсказательной способности в центре плана. 9. Анализ остатков. 10. Интерпретация (анализ) модели. 11. Принятие решений на основе полученной информации

Почему используется полный факторный эксперимент S 2 bi= S 2 восп / N +1 +1 4 0 0 -1 +1 0 4 0 -1 -1 +1 +1 0 0 4 +1 +1 4 0 0 -1 +1 0 0 0 2 0 0 0 +1 +1 0 0 2

ПФЭ 23 х1 -1 +1 План х2 -1 -1 +1 +1 х3 -1 -1 +1 +1 Обозначение (1) a b ab c ac bc abc

yр=b 0+b 1 x 1+b 2 x 2+b 3 x 3+b 12 x 1 x 2+b 13 x 1 x 3+b 23 x 2 x 3+b 123 x 1 x 2 x 3 +1 -1 -1 -1 +1 +1 +1 -1 -1 +1 -1 -1 +1 -1 Z 1 = +1 -1 +1 +1 +1 -1 Z 2 = +1 +1 +1 -1 -1 +1 +1 +1 -1 +1 +1 -1 -1 +1 +1 -1 -1 +1 +1 +1

b 0=(y 1+y 2+y 3+y 4+y 5+y 6+y 7+y 8)/8; b 1=(-y 1+y 2 -y 3+y 4 -y 5+y 6 -y 7+y 8)/8; yuср = yu/N; b 2=(-y 1 -y 2+y 3+y 4 -y 5 -y 6+y 7+y 8)/8; b 3=(-y 1 -y 2 -y 3 -y 4+y 5+y 6+y 7+y 8)/8; S 2 R 0= (yu-yuср)2/(N-1); b 12=(y 1 -y 2 -y 3+y 4+y 5 -y 6 -y 7+y 8)/8; b 13=(y 1 -y 2+y 3 -y 4 -y 5+y 6 -y 7+y 8)/8; S 2 R = (yu-yuрасч)2 / (N-p); b 23=(y 1+y 2 -y 3 -y 4 -y 5 -y 6+y 7+y 8)/8; b 123=(-y 1+y 2+y 3 -y 4+y 5 -y 6 -y 7+y 8)/8; Содержательность модели: F=S 2 R 0/S 2 R Адекватность модели: F=S 2 R/S 2 восп. Предсказательная способность модели: t=|b 0 -y 0 ср|/(S 2 восп/m)0. 5

Дробные реплики ДФЭ 2 3 -1 + + D=0 + + - + + + - D=256 + - - + + + Генерирующее соотношение x 1 x 2=x 3 Определяющий контраст I=x 1 x 2 x 3 Система смешивания b 1 1+ 23; b 2 2+ 13; b 3 3+ 12; b 0 0+ 123

ДФЭ 24– 1 Генерирующие соотношения x 4=x 1 x 2 и x 4=x 1 x 2 x 3 Планы 1) d, a, b, abd, cd, ac, bc, abcd; 2) (1), ad, bd, ab, cd, ac, bc, abcd Определяющие контрасты I=x 1 x 2 x 4 и I=x 1 x 2 x 3 x 4. Системы смешивания 1) b 1 1+ 24; b 2 2+ 14; b 3 3+ 1234; b 4 4+ 12 ; b 13 13+ 234; b 23 23+ 134; b 34 34+ 123; b 0 0+ 124. 2) b 1 1+ 234; b 2 2+ 134; b 3 3+ 124; b 4 4+ 123; b 12 12+ 34; b 13 13+ 24; b 14 14+ 23; b 0 0+ 1234

ДФЭ 27– 4 y=b 0+b 1 x 1+b 2 x 2+b 3 x 3+b 4 x 4+b 5 x 5+b 6 x 6+b 7 x 7 ГС: х4=х1·х2, х5=х1·х3, х6=х2·х3 и х7=х1·х2·х3 Обобщающий ОК включает контрасты, образованные из этих четырех ГС, а также произведений контрастов по два, по три и по четыре. I=х1·х2·х4=х1·х3·х5=х2·х3·х6=х1·х2·х3·х7=х2·х3·х4·х5= =х1·х3·х4·х6=х3·х4·х7=х1·х2·х5·х6=х2·х5·х7=х1·х6·х7= =х4·х5·х6=х1·х4·х5·х7=х2·х4·х6·х7=х3·х5·х6·х7= =х1·х2·х3·х4·х5·х6·х7. Пренебрегая эффектами взаимодействия, начиная с тройных, получим: b 0→β 0 (ниже тройных нет) b 1→β 1+β 24+β 35+β 67 b 2→β 2+β 14+β 36+β 57 b 3→β 3+β 15+β 26+β 47 b 4→β 4+β 12+β 37+β 56 b 5→β 5+β 13+β 27+β 46 b 6→β 6+β 23+β 17+β 45 b 7→β 7+β 34+β 25+β 16

Выбор факторов на основе отсеивающего эксперимента Планы Плакетта-Бермана n N Комбинации знаков 3 4 + - + 7 8 + + + - 11 12 + + - 15 16 + + - 19 20 + + - - - + + - - + - + - - + + - n – количество факторов; N – число экспериментов.

Планы случайного баланса № x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 Ранг 1 2 3 4 5 6 7 8 + + + + + + + + + - 8 3 6 7 4 5 2 1

Анализ диаграмм рассеяния x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 Md- 5. 0 4. 5 4. 0 3. 5 5. 5 6. 0 3. 0 4. 5 Md+ 4. 0 4. 1 3. 0 5. 5 2. 5 3. 5 4. 5 3. 0 B -1. 0 -0. 5 -1. 5 2. 0 3. 0 -2. 5 1. 5 -1. 5 n 2 - - - 3 - - |p| 2. 0 1. 5 6. 0 - - - 7. 5 - - 3 4

ДИСПЕРСИОННЫЙ АНАЛИЗ Однофакторный дисперсионный анализ Модель yij= + j+ ij, yij обозначает i-е наблюдение на j-м уровне фактора (i=1, 2, . . . , m; j=1, 2, …, n). Расчет y-yср=y-50. 1 yij i ↓ 2 6 5 12 9 10 14 11 0 5 6 3 j→ -5 -4 -5 -11 -7 4 -8 -11 -5 -7 -9

Вычисление сумм значений отклика по столбцам. T. 1=6+5+12+9+10=42; T. 2=14+11+0+5+6=36; T. 3=-5 -4 -5 -1 -7=-32; T. 4=-8 -11 -5 -7 -9=-40. T. . =42+36– 32– 40=6. Вычисление средних значений отклика для каждого уровня фактора. y 1 ср=42/5=8. 4; y 2 ср=36/5=7. 2; y 3 ср=-32/5=-6. 4; y 4 ср=-40/5=-8. 0. Вычисление сумм квадратов значений отклика yij по строкам и столбцам. SS 1=62+52+122+92+102=386; SS 2=142+112+02+52+62=378; SS 3=(-5)2+(-4)2+(-5)2+(-11)2+(-7)2 =236; SS 4=(-8)2+(-11)2+(-5)2+(-7)2+(-9)2 =340; SS=386+378+236+340=1340. SSобщ=1340 -62/(5× 4)=1338. 2.

Вычисление сумм квадратов, характеризующих влияние фактора и ошибки. SSисп=422/5+362/5+(-32)2/5+(-40)2/5 -62/20=1135. 0; SSош = 1338. 2– 1135. 0 = 203. 2. Вычисление средних квадратов (дисперсий). νобщ=5× 4– 1=19; νисп=4– 1=3; νош=4×(5 – 1) = 16. MSисп =1135/3=378. 3; MSош=203. 2/16=12. 7. Результаты однофакторного дисперсионного анализа Источник изменчивости Сумма квадратов SS Число степеней свободы ν Средний квадрат MS Критерий Фишера F Фактор 1135. 0 3 378. 3 29. 8 Ошибка 203. 2 16 12. 7 Итого 1138. 2 19

Двухфакторный дисперсионный анализ Модель yij= + j+βj+ ij Расчет yij – 13 мм Автомобиль Марка шины A B C D T. j I 4 1 -1 0 4 II 1 1 -1 -2 -1 III 0 0 -3 -2 -5 IV 0 -5 -4 -4 -13 Т i. 5 -3 -9 -8 -15=T. . 17 27 27 24 95=

Вычисление сумм квадратов SSобщ = 95 -(-15)2/16 = 80. 9; SSмар = ((5)2+(-3)2+(-9)2+ +(-8)2)/4 -(-15)2/16 = 30. 6; SSавт=((4)2+(-1)2+(-5)2+ +(-13)2)/4 -(-15)2/16 = 38. 6; SSост=80. 9 -30. 6 -38. 6=11. 7. Вычисление числа степеней свободы νобщ=n 1·n 2– 1; νмар=n 1 – 1; νавт=n 2 – 1; νост= νобщ–νмар–νавт. νобщ=4· 4– 1=15; νмар=4– 1=3; νавт=4– 1=3; νост=15– 3– 3=9.

Вычисление средних квадратов. МSмар=SSмар/νмар; МSавт=SSавт/νавт; MSост=SSост/νост. МSмар=30. 6/3=10. 2; МSавт=38. 6/3=12. 9; MSост=11. 7/9=1. 3. F=MSисп/MSост. Fмар=10. 2/1. 3=7. 85; Fавт=12. 9/1. 3=9. 92. Результаты двухфакторного дисперсионного анализа Источник изменчивости Сумма Число степеней квадратов SS свободы ν Средний квадрат MS Критерий Фишера F Марки шин 30. 6 3 10. 2 7. 85 Автомобили 38. 6 3 12. 9 9. 92 Остаток 11. 7 9 1. 3 ИТОГО 80. 9 15

Многофакторный дисперсионный анализ Модель yijk= + j+βj+ k + ijk A B C D Уровни х1: a 1; a 2; a 3; a 4; B D A C Уровни х2: b 1; b 2; b 3; b 4; C A D B D C B A Уровни х3: A; B; C; D; Этапы вычислений: 1. Подсчет итогов (сумм) и средних значений по строкам Ai, столбцам Bj и латинским буквам Ck. 2. Вычисление суммы квадратов результатов всех наблюдений: SS 1 = (Yijk)2. 3. Сумма квадратов итогов по строкам, деленная на число элементов в каждой строке: SS 2 = Ai 2 / n. 4. Сумма квадратов итогов по столбцам, деленная на число элементов в каждом столбце: SS 3 = Bj 2 / n. 5. Сумма квадратов итогов по латинским буквам, деленная на число элементов, соответствующих каждой букве: SS 4 = Ck 2 / n.

6. Корректирующий член, равный квадрату общего итога, деленному на общее число ячеек квадрата (на число опытов): SS 5 = Yijk / (n 2). 7. Сумма квадратов для строки: SSa=SS 2–SS 5. 8. Сумма квадратов для столбца: SSb=SS 3 -SS 5. 9. Сумма квадратов для латинской буквы: SSc=SS 4 -SS 5. 10. Общая сумма квадратов: SSобщ=SS 1 -SS 5. 11. Остаточная сумма квадратов: SSост=SSобщ-(SSa+SSb+SSc). Дисперсионный анализ латинского квадрата Источник изменч-ти Сумма квадратов SS Число степеней свободы Средний квадрат MS Критерий Фишера F Строки SSa=SS 2 -SS 5 a=n– 1 MSa=SSa/ a MSa / MSост Столбцы SSb=SS 3 -SS 5 b=n– 1 MSb=SSb/ b MSb / MSост Лат. буквы SSc=SS 4 -SS 5 c=n– 1 MSc=SSc/ c MSс / MSост Остаток SSост=SSобщ – ост=(n-1) (n-2) MSост=SSост/ ост – (SSa+SSb+SSc) Итого SSобщ=SS 1–SS 5 общ=n 2– 1

Греко-латинский квадрат Исследовано влияние рецептурных факторов на относительное удли-нение при разрыве композиций на основе поливинилхлорида (ПВХ). x 1 – партия полимера. Уровни фактора x 1: a 1, a 2, a 3, a 4. x 2 – содержание пластификатора. Уровни фактора x 2, масс. ч. : b 1 – 20, b 2 – 30, b 3 – 40, b 4 – 50. x 3 – тип стабилизатора. Уровни фактора x 3: A –соевое масло, B – стеарат кальция, C – стеарат бария и D – стеарат кадмия. x 4 – тип динамометра. Уровни фактора x 4: , β, и. A B C Dβ C D Aβ B Bβ A D C D Cβ B A

План и результаты эксперимента при изучении свойств ПВХ x 2 x 1 a 2 a 3 a 4 Aiср Ai 2 b 1 A (8. 2) B (10. 2) C (8. 3) Dβ (5. 9) 32. 6 8. 2 1063 b 2 C (15. 1) D (25. 8) Aβ (22. 3) B (21. 2) 84. 4 21. 1 7123 b 3 Bβ (48. 9) A (25. 7) D (49. 6) C (35. 2) 160. 4 39. 9 25408 b 4 D (74. 1) Cβ (69. 5) B (80. 9) A (57. 1) 281. 6 70. 4 79299 Bj 146. 3 131. 2 161. 1 120. 4 G= =558. 0 Bjср 36. 6 32. 8 40. 3 29. 9 Bj 2 21404 17213 25953 14256

A B C D C k 113. 3 161. 2 128. 1 155. 4 Ckср 28. 3 Ck 2 12837 25985 16410 24149 40. 3 β 32. 0 38. 9 Dl 129. 3 146. 6 150. 1 132. 0 Dlср 32. 3 D l 2 16718 21492 22530 17424 36. 7 37. 8 33. 0

Вычисление суммы квадратов результатов всех наблюдений. . . SS 1=8. 22+10. 22+8. 32+. . . +80. 92+57. 12 =28992. 54. Сумма квадратов итогов по строкам, деленная на число элементов в каждой строке. SS 2=(1063+7123+25408+79299) / 4 =28223. 25. Сумма квадратов итогов по столбцам, деленная на число элементов в каждом столбце. . SS 3=(21404+17213+25953+14256)/4=19706. 50. Сумма квадратов итогов по латинским буквам, деленная на число элементов, соответствующих каждой букве. SS 4=(12837+25985+16410+24149) / 4 =19845. 25. Сумма квадратов итогов по греческим буквам, деленная на число элементов, соответствующих каждой букве. SS 5=(16718+21492+22530+17424) / 4 =19541. 00.

Корректирующий член, равный квадрату общего итога, деленному на общее число ячеек квадрата (на число опытов). SS 6 = 558. 02/ 16 = 19460. 25. Сумма квадратов для строки. SSa=SS 2 -SS 6; SSa=28223. 25 -19460. 25=8763. 00. Сумма квадратов для столбца. SSb=SS 3 -SS 6; SSb=19706. 50 -19460. 25=246. 25. Сумма квадратов для латинской буквы. SSc=SS 4 -SS 6; SSc=19845. 25 -19460. 25=385. 00. Сумма квадратов для греческой буквы. SSd=SS 5 -SS 6; SSd=19541. 00 -19460. 25=80. 75. Общая сумма квадратов. SSобщ=SS 1 -SS 6; SSобщ=28992. 54 -19460. 25=9532. 27. Остаточная сумма квадратов. SSост=SSобщ-(SSa+SSb+SSc+SSd); SSост=9532. 27 -(8763. 00+246. 25+385. 00+80. 75)=57. 27.

Дисперсионный анализ греко-латинского квадрата 4 4. Источник изменчивости Сумма квадратов SS Число степеней свободы ν Средний квадрат MS Критерий Фишера F Строки, x 2 8763. 00 3 2921. 0 152. 9 Столбцы, x 1 246. 25 3 82. 1 4. 3 Лат. буквы, x 3 385. 00 3 128. 3 6. 7 Греч. буквы, x 4 80. 75 3 26. 9 1. 4 Ошибка 57. 27 3 19. 1 F(3; 3; 0. 05)=9. 28 и F(3; 3; 0. 1)=5. 39 Итого 9532. 27 15

ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА В УСЛОВИЯХ ВРЕМЕННОГО ДРЕЙФА Влияние этого временнóго дрейфа на параметры математического описания процесса можно практически устранить, разбивая серию опытов на отдельные блоки так, чтобы эффект от временнóго дрейфа оказался смешанным с произведениями факторов, для которых коэффициенты регрессии достаточно малы. Допустим, необходимо устранить влияние временнóго дрейфа на параметры уравнения регрессии, получаемого в результате полного трехфакторного эксперимента. С этой целью разобьем эксперимент на два блока и введем новую независимую переменную хд, характеризующую дрейф. Положим хд=х1 х2 х3. В один из блоков отберем опыты, для которых хд=+1, а в другой блок – для которых хд=– 1. Формально это планирование можно рассматривать как эксперимент типа 24– 1 с генерирующим соотношением хд=х1 х2 х3.

Планирование в условиях временного дрейфа Блок х1 х2 х3 хд=х1 х2 х3 Отклик 1 – 1 +1 – 1 – 1 +1 +1 +1 +1 +1 – 1 – 1 2 y 1+βд y 2+βд y 3+βд y 4+βд y 5–βд y 6–βд y 7–βд y 8–βд

Если уравнение регрессии ищется в виде y=b 0+b 1 x 1+b 2 x 2+b 3 x 3+b 12 x 1 x 2+b 23 x 2 x 3+b 123 x 1 x 2 x 3, то коэффициенты регрессии будут являться следующими оценками: b 0→β 0; b 1→β 1; b 2→β 2; b 3→β 3; b 12→β 12; b 13→β 13; b 23→β 23; b 123→β 123+βд; Рассчитаем, например, коэффициенты b 1 и b 123: b 1=(–(y 1+βд)+(y 2+βд)–(y 3+βд)+(y 4+βд)–(y 5–βд)+(y 6– βд)–(y 7–βд)+(y 8–βд))/8= =(–y 1+y 2–y 3+y 4–y 5+y 6–y 7+y 8)/8; b 123=((y 1+βд)+(y 2+βд)+(y 3+βд)+(y 4+βд)–(y 5–βд)–(y 6– βд)–(y 7–βд)–(y 8–βд))/8= =(y 1+y 2+y 3+y 4–y 5–y 6–y 7–y 8)/8+βд. Следовательно, все коэффициенты регрессии, кроме b 123, не содержат погрешностей, обусловленных временным дрейфом.

Анализ временнóго дрейфа может быть осуществлен также с помощью магических квадратов. Пусть нужно поставить N независимых опытов. Числа от 1 до N – это некоторые параметры времени, такие как часы или дни. Высказывается предположение, что при постановке N опытов имеет место временнóй дрейф экспериментальных данных. Характер дрейфа линейный. Рассмотрим план, представляющий собой совмещение магического квадрата с полным факторным экспериментом 24.

Рассмотрим результаты определения зависимости твердости резин от температуры вулканизации (= 180 о. С и = 140 о. С), продолжительности процесса (= 17 мин и = 5 мин), дозировки ускорителя (= 1. 2 масс. ч. и = 0. 4 масс. ч.) и наполнителя (= 30 масс. ч. и = 10 масс. ч.). Реализован полный факторный эксперимент 24 Допустим, что ежедневно ставим один опыт, тогда все опыты будут поставлены за 16 дней. В течение этого времени имеет место линейный дрейф. Для защиты от этого дрейфа наложим ПФЭ 24 на 4 4 магический симметричный квадрат, элементами которого являются номера шестнадцати опытов. Такой план приемлем, если взаимодействия х1 х4 и х2 х3 незначимы.

Факторный эксперимент 24, совмещенный с 4 4 магическим квадратом x 1(+1) x 2(+1) x 4(+1) x 3(+1) x 1(– 1) x 2(+1) x 2(– 1) 16 72. 0 2 70. 0 3 73. 8 13 59. 8 x 4(– 1) 5 69. 8 11 57. 8 10 62. 7 8 54. 7 x 4(+1) x 3(– 1) 9 67. 5 7 59. 3 6 64. 4 12 52. 2 x 4(– 1) 4 62. 4 14 48. 3 15 52. 2 1 50. 2

« x 1=[-1; 1; -1; 1; -1; 1]; « x 2=[-1; -1; 1; 1; -1; 1; 1]; « x 3=[-1; -1; 1; 1; 1; 1]; « x 4=[-1; -1; 1; 1; 1]; « y=; « X=; « b=(inv(X"*X))*(X"*y) b=61. 0687 2. 3187 4. 5312 4. 0062 3. 8063 « Y=X*b; « max(abs(y-Y)) ans = 3. 7938 « [(y-Y). /y*100] ans = 7. 5573 « (64. 7 -61. 1)/15*2 ans=0. 4800 В последней формуле сопоставлены значения отклика до дрейфа и после него. Если бы не было дрейфа, значение отклика в нулевой точке было бы 64. 7 единиц, а в результате дрейфа (пребывание в агрессивной среде) понизилось на 3. 6 единиц.

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Зависимость между двумя переменными величинами называется статистической, если каждому значению одной из них соответствует множество значений другой, но число этих значений не является постоянным, а сами значения не отражают определенной закономерности. Рассмотрим двумерные наблюдения, т. е. такие наблюдения, которые дают значения двух случайных величин х и у. Используем такую статистическую характеристику – ковариацию или второй смешанный центральный момент (иначе – корреляционный момент) величин х и у: Коэффициент корреляции

Справедливы следующие соотношения: y=a+bx; x=a +׳ b ׳ y Таким образом, мы получаем два уравнения регрессии, которые отвечают двум различным математическим формулировкам задачи: в первом случае минимальное значение имеет сумма квадратов отклонений, взятых параллельно оси ординат, во втором случае – сумма квадратов отклонений, взятых параллельно оси абсцисс.

При подсчете коэффициентов регрессии можно воспользоваться следующими соотношениями: β= +φ При rxy = 1, tgφ = 0, следовательно, в этом частном случае обе линии регрессии совпадают. Каждая из переменных становится линейной функцией другой переменной. При rxy = 0 мы получаем две взаимно перпендикулярные прямые, параллельные координатным осям и проходящие через точку с координатами В этом случае очевидно, что между переменными не может существовать линейной статистической связи.

y 1 – условное напряжение при удлинении 100%, МПа; y 2 – условное напряжение при удлинении 200%, МПа; y 3 – условное напряжение при удлинении 300%, МПа; y 4 – условная прочность при растяжении, МПа; y 5 – относительное удлинение при разрыве, %; y 6 – сопротивление разлиру, к. Н/м; y 7 – твердость по Шору А.

Представление о корреляциях с помощью модели косинуса Соотношение между вулканизационными характеристиками ν=877; r=0. 968; r=0. 935; r=0. 984; tgφ=– 0. 0281. tgφ=– 0. 0535 tgφ=– 0. 0155.

ОПТИМИЗАЦИЯ ОДНОМЕРНЫЙ ПОИСК Метод последовательной дихотомии предусматривает размещение на каждом этапе экспериментирования сразу двух новых точек, расположенных симметрично относительно середины интервала неопределенности на расстоянии друг от друга. Здесь – по возможности малая величина, ограниченная снизу разрешающей способностью доп в измерении величины x. Значение доп – это та минимальная разница между соседними наблюдениями x, которая может быть обнаружена инструментально с помощью тех измерительных средств, которые имеются в распоряжении экспериментатора.

Метод поиска Фибоначчи базируется на использовании чисел Фибоначчи Fk, определяемых рекуррентным соотношением вида: Fk=Fk-1+Fk-2, k>1, F 0=F 1=1. N 1 2 3 4 5 6 7 8 9 FN 1 2 3 5 8 13 21 34 55 Метод золотого сечения является частной разновидностью метода Фибоначчи и отличается от него лишь тем, что в методе золотого сечения нет необходимости в обязательном предварительном определении общего числа опытов N. Координаты x(1) (первой точки в этом методе) находятся по формуле: x(1) = xmin + q L,

МНОГОМЕРНЫЙ ПОИСК Многомерность делает унимодальность менее вероятной Нельзя найти меру эффективности поиска, которая не зависела бы некоторым образом от удачи экспериментатора. Восприятие размера в многомерных пространствах. Существует большое число разнообразных методов многомерного поиска. В дальнейшем будут рассмотрены лишь некоторые из них, получившие наибольшее распространение для целей экспериментальной оптимизации. Эти методы можно разделить на две большие группы: на градиентные и неградиентные методы поиска экстремума.

Метод покоординатного поиска, (метод Гаусса-Зайделя) Метод Гаусса-Зайделя весьма прост при практической реализации, достаточно помехоустойчив. Однако ясно, что траектория поиска вряд ли будет наикратчайшей. Кроме того метод Гаусса. Зайделя имеет тенденцию к ложной остановке процедуры, если в ходе движения поисковая точка окажется на узком «гребне» .

ПЛАНИРОВАНИЕ ЭКСТРЕМАЛЬНЫХ ЭКСПЕРИМЕНТОВ В ПРОМЫШЛЕННЫХ УСЛОВИЯХ 1. Промышленный эксперимент должен одновременно с нормальным функционированием объекта и производством товарной продукции обеспечить получение полезной информации для нахождения оптимальных условий управления объектом. 2. Чтобы извлечь такую информацию, можно реализовать целенаправленное «покачивание» объекта около так называемого «рабочего режима» , планируя пробные шаги варьирования по управляемым факторам и выделяя влияние изучаемых переменных на отклик в условиях шума с помощью регрессионного анализа. 3. В производственных условиях, по сравнению с лабораторными, имеет место большое количество неконтролируемых и неуправляемых факторов, влияющих на ход процесса. 4. Медленные (относительно частоты постановки опытов) случайные флуктуации одних неконтролируемых и неуправляемых факторов промышленного объекта вызывают нерегулярный временной дрейф поверхности целевого отклика по отношению к управляемым факторам, то есть нерегулярное изменение с течением времени всей поверхности, а значит, и координат точки ее экстремума в их пространстве. 5. В промышленных условиях для реализации адаптационной оптимизации нет специального штата высококвалифицированных исследователей, а есть у производственной установки обслуживающий персонал довольно низкой квалификации. Здесь нет и той насыщенности исследования измерительными, регистрирующими приборами и вычислительными устройствами, которая присуща лабораторному эксперименту. Поэтому планы и вычислительные алгоритмы обработки наблюдений промышленного эксперимента должны быть достаточно просты. 6. Адаптационная оптимизация производственных установок предполагает постоянное исследование и подстройку объекта, то есть неограниченное временем проведение промышленного эксперимента, а значит, и неограниченное число его опытов.

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ Во многих ситуациях, которые могут встретиться в промышленности, в экономической деятельности требуется максимизировать или минимизировать некоторую количественную величину при определенных ограничениях. Например, бизнесмен хочет максимизировать свою прибыль, однако при этом он ограничен общим числом имеющихся у него машин, наличием людей, капиталом, который он может инвестировать, и рядом других экономических факторов. Пример. Имеется три вещества сложного состава В 1, В 2 и В 3 разной цены. Каждое из них содержит определенное количество необходимых ингредиентов И 1, И 2, И 3 и И 4 Известно, что в течение суток требуется И 1 – не менее 250, И 2 – не менее 60, И 3 – не менее 100 и И 4 – не менее 220. Требуется минимизировать затраты на приобретение этих веществ. Очевидно, что количество приобретаемых веществ не может быть отрицательным.

Содержание необходимых ингредиентов в веществах и цены этих веществ В 1 В 2 В 3 И 1 4 6 15 И 2 2 2 0 И 3 5 3 4 И 4 7 3 12 Цена 44 35 100

В состав MATLAB входит Tool. Box Optimization, предназначенный для решения такого рода задач. Используется функция linprog. Первым аргументом linprog всегда является вектор f (вектор коэффициентов), далее задается матрица A и вектор b. Решение. x 1, x 2 и x 3 – искомые количества веществ. Целевая функция: f. Tо x=44·x 1+35·x 2+100·x 3. При наличии ограничений в виде равенств дополнительными аргументами могут быть Aeq и beq, наконец, двусторонние ограничения являются шестым и седьмым аргументами linprog. Поскольку линейные ограничения содержат «меньше или равно» , а количество ингредиентов в продуктах не должно быть менее заданных величин, то следует изменить знаки обеих частей системы. Для решения задачи составляется файл-прграмма. При вызове linprog вместо неиспользуемых аргументов (нет ограничений в виде равенств и верхней границы для неизвестных) задаются пустые массивы, обозначаемые .

Решение. Матрица А и векторы b и lb: =linprog(f, A, b, , lb, ); p=1. 8118 e+003; р – общая стоимость продуктов. Интерпретация. Представляет интерес умножить A на х, определить рекомендуемое содержание ингредиентов и сравнить его с минимально допустимым. A*x= [-250; -60: -142. 14; -220]; Сравнивая эти числа с вектором b, можно констатировать завышенное содержание третьего ингредиента. Это объясняется тем, что не было введено ограничение на максимальное содержание.

КОНТРОЛЬНЫЕ НАБЛЮДЕНИЯ Одно из наиболее важных применений статистическая теория находит в методах статистического контроля, среди которых хорошо известным примером может служить контроль качества. Контроль качества находит наиболее широкое применение в промышленности. Методика контроля качества находит два основных применения. Первое применение она находит в управлении технологическими процессами, при котором какой-либо реальный процесс, например такой, как работа машины, измеряется с целью оценки хода работы в настоящее время и, как подразумевается, для получения отправных данных для работы в ближайшем будущем. Второе применение она находит в приемочном контроле, который оценивает ход работы в прошлом путем измерения качества произведенных товаров. Поэтому это второе применение имеет дело с конечной совокупностью вещей, которые уже были произведены, тогда как управление технологическим процессом нацелено на проверку самого хода фактического производства. Это позволяет руководству выявить недостатки в процессе почти одновременно с их появлением и тем самым предотвратить выпуск изделий, имеющих дефекты.

Метод контроля основывается на свойствах нормальной кривой. Около 99. 7% всех наблюдаемых значений, взятых из нормально распределенной совокупности, располагаются в пределах интервала трех стандартных отклонений в любую сторону от среднего значения, и поэтому только около трех из каждой тысячи показаний наблюдений располагается вне этих пределов. Исходя из этого, может быть составлена контрольная карта, которая показывает возможные значения на вертикальной оси и ряды последовательных целых чисел, представляющих последовательные наблюдения, расположенные вдоль горизонтальной оси. Горизонтальная линия проведена на высоте, соответствующей среднему значению; гори зонтальные линии проведены также на высо тах, представляющих контрольные пределы. Верхний контрольный предел установлен на высоте, соответствующей значению средней плюс три стандартных отклонения (С. о.); ни жний контрольный предел установлен на вы соте, соответствующей значению средней минус три стандартных отклонения, так что около 99. 7% всех показаний должны расположиться в этих пределах.

Контрольные карты можно использовать: 1. Как сигнал о том, что в процессе произошло некоторое изменение, так и в качестве оценки величины изменения, для которого требуется коррекция. 2. Исключительно как сигнал о том, что в процессе произошло некоторое изменение, чтобы оператор осознал, что процесс требует его внимания. 3. Для получения оценок числа случаев в прошлом, когда в процессе возникали изменения, и установления на их основе причин, вызывающих эти изменения. 4. Как меру качества продукции для классификации по периодам. В производстве чаще всего используются: 1) контрольные карты Шухарта (карты R и s – средних значений, размаха и стандартного отклонения); 2) карты скользящих геометрических средних (скользящего экспоненциально взвешенного среднего) и скользящих размахов; 3) карты накопленных сумм; 4) многомерные контрольные карты.

Контрольные карты и R для вулканизационных характеристик t 10, t 50 и t 90 Карта накопленных сумм

ОПИСАНИЕ ПОЧТИ СТАЦИОНАРНОЙ ОБЛАСТИ При изучении почти стационарной области возникает ряд новых сложных проблем. Если мы хотим описать эту часть поверхности отклика полиномом (многочленом) второго порядка, то переменные нужно варьировать уже на трех уровнях. Возникает сложная задача построения таких планов. Здесь, прежде всего, нужно выбрать какой-то достаточно разумный критерий оптимальности. Во всяком случае, с самого начала было ясно, что планы полного факторного эксперимента типа 3 n (n – количество факторов) здесь неприемлемы, так как они потребуют слишком большого числа опытов. Если три фактора – 33=27, четыре фактора – 34=81. В работе Бокса и Уилсона (1951) была выдвинута идея построения композиционных планов, ядром которых служат линейные ортогональные планы. Предполагается что, попав в почти стационарную область, исследователь сначала ставит опыты, используя линейные планы. Затем, убедившись в том, что гипотеза линейности здесь не проходит, он достраивает линейный план до плана второго порядка; отсюда и само название - композиционный план.

Рассмотрим такую ситуацию: имеется два фактора, и на первом этапе мы строим полный факторный эксперимент (ПФЭ) 22. На рисунке точки этого плана изображены зачерненными кружками. Далее ставится эксперимент в центре квадрата для проверки гипотезы адекватности. Затем реализуются «звездные» точки. Выбор плана – это всегда компромиссное решение, принимаемое в результате диалога. Раньше это был диалог со справочником-каталогом планов, сейчас – это диалог с компьютером.

Ортогональность плана. План называется ортогональным, если ковариационная матрица плана содержит все нулевые элементы, кроме элементов главной диагонали (диагональная матрица). Для ортогональных планов все оценки коэффициентов независимы: эллипсоид рассеяния ориентирован так, что направление его главных осей совпадает с направлением координатных осей в пространстве коэффициентов. Ротатабельность плана. Ротатабельные планы имеют ковариационную матрицу, инвариантную к вращению координат, позволяют получить одинаковую дисперсию предсказанных значений функции отклика во всех равноудаленных от центра эксперимента точках. Выполнение этого условия делает любое направление от центра эксперимента равнозначным в смысле точности оценки поверхности. Если информационные контуры плана представить как поверхности с равными значениями дисперсии оценки поверхности отклика, то для ротатабельного плана эти поверхности будут представлять собой сферы.

ПРИМЕНЕНИЕ СОВРЕМЕННЫХ ПРОГРАММНЫХ ПРОДУКТОВ ДЛЯ АНАЛИЗА ПОЧТИ СТАЦИОНАРНОЙ ОБЛАСТИ Экспериментальная сетка, сформированная ломаными линиями без аппроксимации уравнением Поверхность отклика, отвечающая наибольшему значению коэффициента детерминации

ПРИМЕНЕНИЕ СОВРЕМЕННЫХ ПРОГРАММНЫХ ПРОДУКТОВ ДЛЯ АНАЛИЗА ПОЧТИ СТАЦИОНАРНОЙ ОБЛАСТИ Поверхность отклика, отвечающая модели 310 по каталогу программы TC 3 D Поверхность отклика, отвечающая модели 301 по каталогу программы TC 3 D

ПОСТРОЕНИЕ ДИАГРАММ СОСТАВ-СВОЙСТВО Частным случаем решения задачи описания почти стационарной области является построение регрессионных моделей для систем, являющихся смесями двух и более различных компонентов. Переменные xi таких систем являются пропорциями (относительным содержанием) нескольких (например, трех) компонентов смеси и удовлетворяют условию xi = x 1 + x 2 + x 3 = 1 Геометрическое место точек, удовлетворяющих условию нормированности сумм переменных, представляет собой двумерный симплекс (треугольник). Каждой точке симплекса соответствует смесь определенного состава, и любой комбинации относительных содержаний трех компонентов соответствует определенная точка симплекса. В рассматриваемой нами ситуации вершины симплекса соответствуют 100%-му содержанию каждого компонента; стороны треугольника, лежащие напротив этих вершин, соответствуют нулевому содержанию данного компонента; относительное содержание каждого компонента откладывается вдоль соответствующей стороны треугольника состава. Состав может быть выражен в мольных, массовых и объемных долях или в процентах.

Опустив из каждой вершины треугольника высоту, разделив каждую из них на десять равных по величине отрезков и проведя через полученные деления прямые, параллельные сторонам треугольника, получим треугольную сетку.

Для решения задачи построения диаграммы «свойство-состав» на симплексе целесообразно рассматривать модель y=y(x 1, x 2, x 3) (y – отклик) в форме приведенного полинома. Такие приведенные полиномы для трехкомпонентных смесей показаны ниже. Модель второго порядка для трех переменных: y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 Неполная кубическая модель: y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 + 123 x 1 x 2 x 3 Модель третьего порядка: y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 + + 12(x 1 – x 2) + 13(x 1 – x 3) + 23(x 2 – x 3) + 123 x 1 x 2 x 3 Модель четвертого порядка: y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 + + 12(x 1 – x 2) + 13(x 1 – x 3) + 23(x 2 – x 3) + + 12 x 1 x 2(x 1 – x 2)2+ 13 x 1 x 3(x 1 – x 3)2+ 23 x 2 x 3(x 2 – x 3)2+ 1123 x 12 x 2 x 3+ 1223 x 1 x 22 x 3+ 1233 x 1 x 2 x 32 Полиномы такого вида получаются из обычных полиномов соответствующей степени введением соотношения xi = x 1 + x 2 + x 3 = 1

Так, например, полином второй степени, в общем случае имеющий вид y=b 0+b 1 x 1+b 2 x 2+b 3 x 3+b 12 x 1 x 2+b 13 x 1 x 3+b 23 x 2 x 3+b 11 x 12+b 22 x 22+b 33 x 32, в приведенной форме с учетом условия xi = x 1 + x 2 + x 3 = 1 приобретет форму y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 При переходе к приведенной форме постоянный член b 0 исключается из уравнения умножением обеих сторон xi = x 1 + x 2 + x 3 = 1 на b 0. b 0 x 1 + b 0 x 2 + b 0 x 3 = b 0 и подстановкой полученных результатов в уравнение y=(b 0+b 1)x 1+(b 0+b 2)x 2+(b 0+b 3)x 3+b 12 x 1 x 2+b 13 x 1 x 3+b 23 x 2 x 3+b 11 x 12+b 22 x 22+b 33 x 32 Исключения квадратичных членов можно достичь подстановкой в уравнение вместо величин x 12, x 22 и x 32 значений x 12=x 1–x 1 x 2–x 1 x 3, x 22=x 2–x 1 x 2–x 2 x 3, x 32=x 3–x 1 x 3–x 2 x 3, образованных путем умножения соотношения xi = x 1 + x 2 + x 3 = 1 соответственно на x 1, x 2 и x 3 y=(b 0+b 11)x 1+(b 0+b 22)x 2+(b 0+b 33)x 3+(b 12–b 11–b 22)x 1 x 2+ + (b 13–b 11–b 33)x 1 x 3 +(b 23–b 22–b 33)x 2 x 3 Введя обозначения 1=b 0+b 11; 2=b 0+b 22; 3=b 0+b 33; 12=b 12–b 11–b 22; 13= b 13–b 11–b 33; 23=b 23–b 22–b 33, получим приведенную форму y = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3

Для оценки коэффициентов приведенных полиномов были предложены симплекс-решетчатые планы. В таблице представлено расположение точек (матрица планирования) и обозначение откликов для случая модели второго порядка. Отклик Координаты точек Отклик Координаты точек x 1 x 2 x 3 y 1 1 0 0 y 12 1/2 0 y 2 0 1 0 y 13 1/2 0 1/2 y 3 0 0 1 y 23 0 1/2

Для построения модели второго порядка реализуются точки в вершинах треугольника и в серединах его сторон. Схема расположения экспериментальных точек в симлексных решетках {3, 2} {3, 3}* {3, 3} {3, 4} {4, 2} {q, n}-решетки, q – число компонентов смеси, n – степень полинома Формулы для вычисления параметров модели второго порядка 1=y 1; 2=y 2; 3=y 3; 12=4 y 12– 2 y 1– 2 y 2; 13=4 y 13– 2 y 1– 2 y 3; 23=4 y 23– 2 y 2– 2 y 3.

Пример. Результаты исследования прочности пористых резин на основе комбинации каучуков СКМС-30 РП и БС-45 К, содержа-щих три типа порообразователей х1 – N, N’-динитрозопентаметилен-тетрамин (ЧХЗ-18), х2 – азодикарбонамид (ЧХЗ-21), х3 – бикарбонат натрия. Координаты точек и результаты эксперимента Координаты точек x 1 x 2 x 3 1 0 0 0 1 0 0 σ, МПа Координаты точек σ, МПа x 1 x 2 x 3 5. 6 5. 9 ½ 1/2 0 4. 4 4. 7 0 3. 2 1/2 0 1/2 5. 1 5. 4 1 6. 0 6. 3 0 1/2 3. 8 4. 0

Вычисление коэффициентов приведенного полинома. σ = 1 x 1 + 2 x 2 + 3 x 3 + 12 x 1 x 2 + 13 x 1 x 3 + 23 x 2 x 3 , хi . 1= σ1; 2= σ2; 3= σ3; 12=4σ12– 2σ1– 2σ2; 13=4σ13– 2σ1– 2σ3; 23=4σ23– 2σ2– 2σ3. β 1=(5. 6+5. 9)/2=5. 75; β 2=(3. 0+3. 2)/2=3. 10; β 3=(6. 0+6. 3)/2=6. 15; β 12=4(4. 4+4. 7)/2 -2(5. 6+5. 9)/2 -2(3. 0+3. 2)/2=0. 50; β 13=4(5. 1+5. 4)/2 -2(5. 6+5. 9)/2 -2(6. 0+6. 3)/2=-2. 80; β 23=4(3. 8+4. 0)/2 -2(3. 0+3. 2)/2 -2(6. 0+6. 3)/2=-2. 90. Уравнение регрессии имеет вид: σ = 5. 75 x 1 + 3. 10 x 2 + 6. 15 x 3 + 0. 50 x 1 x 2 - 2. 80 x 1 x 3 - 2. 90 x 2 x 3. Проверка однородности дисперсий. Критерий Кохрена: G=S 2 max/ Σ S 2 j. Средние значения: 5. 75; 3. 10; 6. 15; 4. 55; 5. 25; 3. 90. Дисперсии: 0. 045; 0. 020; 0. 045; 0. 020. Условие однородности дисперсий: G

Расчет дисперсии воспроизводимости. N=6; S 2 E =(0. 045+0. 020+0. 045+0. 020)/6=0. 037. Значения отклика в проверочной точке 4. 1; 4. 3. σ0 ср=4. 20 МПа Проверка адекватности модели. =a 12+a 22+a 32+a 122+a 132+a 232; ai=xi(2 xi-1); aij=4 xixj. t= σ·(r/(S 2 E (1+))1/2, = p(r-1), y=|σрасч-σср| – модуль разности отклика, рассчитанного по уравнению, и среднего отклика, определенного экспериментально в проверочной точке по r повторным наблюдениям. a 1=a 2=a 3=1/3·(2· 1/3 -1)=-1/9; a 12=a 13=a 23=4· 1/3=4/9; =3(-1/9)2+3(4/9)2=0. 630. Значения прочности в центре плана: σ0 расч=5. 75/3+3. 10/3+6. 15/3+ 0. 50/9 -2. 80/9 -2. 90/9=4. 42 МПа. t=|4. 42 -4. 20|·(2/(0. 037(1+0. 630))1/2 =1. 27; =6(2 -1)=6; =5 %; t(6; 0. 05)=2. 45.

Условие адекватности: tрасч

Пример. Влияние состава полимерной матрицы на тепловой эффект вулканизации. Все рецептуры содержали 15 масс. % каучука СКМС 30 РП и 30 масс. % смеси полимеров: каучук СКД (х1), полистирол (х2) и каучук СКМС-30 РП (х3) в различных соотношениях. Все системы содержали порообразователи. Для построения диаграмм использована программа в системе MATLAB. Но в нее были внесены определенные коррективы, которые позволили реализовать процедуру в следующей последовательности. С использованием программы Table Curve 3 D формируется модель, включающая два фактора х1 и х2. Затем составляется столбец значений параметров полученной модели b. этот столбец вводится в командное окно MATLAB. Затем открывается программа-модуль для построения диаграмм. В эту программу заранее внесены возможные уравнения. Такой подход позволяет рассчитать несколько конкурирующих моделей и оценить их статистические характеристики. В рассматриваемом случае получены следующие модели: 310 z=a+bx+cy+dx^2+ey^2+fxy+gx^3+hy^3+ixy^2+jx^2 y; 1301 z=(a+cx+ey+gx^2+iy^2+kxy)/(1+bx+dy+fx^2+hy^2+jxy); 301 z=a+bx+cy+dx^2+ey^2+fxy; 65 z=a+bx+cx^2+dx^3+ex^4+fx^5+gy+hy^2+iy^3+jy^4+ky^5; 50 z=a+bx+cx^2+dx^3+ex^4+fy+gy^2+hy^3+iy^4+jy^5.

На рисунке слева сплошными линиями показаны изолинии, полученные с использованием модели третьего порядка (310), а пунктиром – модели второго порядка. Справа даны изолинии (сплошные) применительно к моделям 65 и 50. они практически совпадают. Пунктиром показаны изолинии для модели 1301 по каталогу TC 3 D.

1. История возникновения планирования эксперимента

Планирование эксперимента – продукт нашего времени, однако истоки его теряются в глубине веков.

Истоки планирования эксперимента уходят в глубокую древность и связаны с числовой мистикой, пророчествами и суевериями.

Это собственно не планирование физического эксперимента, а планирование числового эксперимента, т.е. расположение чисел так, чтобы выполнялись некоторые строгие условия, например, на равенство сумм по строкам, столбцам и диагоналям квадратной таблицы, клеточки которой заполнены числами натурального ряда.

Такие условия выполняются в магических квадратах, которым, по-видимому, принадлежит первенство в планировании эксперимента.

Согласно одной легенде примерно в 2200 г. до н.э. китайский император Ю выполнял мистические вычисления с помощью магического квадрата, который был изображен на панцире божественной черепахи.

Квадрат императора Ю

Клетки этого квадрата заполнены числами от 1 до 9, и суммы чисел по строкам, столбцам и главным диагоналям равны 15.

В 1514 г. немецкий художник Альбрехт Дюрер изобразил магический квадрат в правом углу своей знаменитой гравюры-аллегории «Меланхолия». Два числа в нижнем горизонтальном ряду A5 и 14) составляют год создания гравюры. В этом состояло своеобразное «приложение» магического квадрата.

Квадрат Дюрера

В течение нескольких веков построение магических квадратов занимало умы индийских, арабских, немецких, французских математиков.

В настоящее время магические квадраты используются при планировании эксперимента в условиях линейного дрейфа, при планировании экономических расчетов и составлении рационов питания, в теории кодирования и т.д.

Построение магических квадратов является задачей комбинаторного анализа, основы которого в его современном понимании заложены Г. Лейбницем. Он не только рассмотрел и решил основные комбинаторные задачи, но и указал на большое практическое применение комбинаторного анализа: к кодированию и декодированию, к играм и статистике, к логике изобретений и логике геометрии, к военному искусству, грамматике, медицине, юриспруденции, технологии и к комбинации наблюдений. Последняя область применения наиболее близка к планированию эксперимента.

Одной из комбинаторных задач, имеющей прямое отношение к планированию эксперимента, занимался известный петербургский математик Л. Эйлер. В 1779 г. он предложил задачу о 36 офицерах как некоторый математический курьез.

Он поставил вопрос, можно ли выбрать 36 офицеров 6 рангов из 6 полков по одному офицеру каждого ранга от каждого полка и расположить их в каре так, чтобы в каждом ряду и в каждой шеренге было бы по одному офицеру каждого ранга и по одному от каждого полка. Задача эквивалентна построению парных ортогональных 6x6 квадратов. Оказалось, что эту задачу решить невозможно. Эйлер высказал предположение, что не существует пары ортогональных квадратов порядка п=1 (mod 4).

Задачей Эйлера, в частности, и латинскими квадратами вообще занимались впоследствии многие математики, однако почти никто из них не задумывался над практическим применением латинских квадратов.

В настоящее время латинские квадраты являются одним из наиболее популярных способов ограничения на рандомизацию при наличии источников неоднородностей дискретного типа в планировании эксперимента. Группировка элементов латинского квадрата, благодаря своим свойствам (каждый элемент появляется один и только один раз в каждой строке и в каждом столбце квадрата), позволяет защитить главные эффекты от влияния источника неоднородностей. Широко используются латинские квадраты и как средство сокращения перебора в комбинаторных задачах.

Возникновение современных статистических методов планирования эксперимента связано с именем Р. Фишера.

С 1918 г. он начал свою известную серию работ на Рочемстедской агробиологической станции в Англии. В 1935 г. появилась его монография «Design of Experiments», давшая название всему направлению.

Среди методов планирования первым был дисперсионный анализ (кстати, Фишеру принадлежит и термин «дисперсия»). Фишер создал основы этого метода, описав полные классификации дисперсионного анализа (однофакторный и многофакторный эксперименты) и неполные классификации дисперсионного анализа без ограничения и с ограничением на рандомизацию. При этом он широко использовал латинские квадраты и блок-схемы. Вместе с Ф. Йетсом он описал их статистические свойства. В 1942 г. А. Кишен рассмотрел планирование по латинским кубам, которое явилось дальнейшим развитием теории латинских квадратов.

Затем Р. Фишер независимо опубликовал сведения об ортогональных гипер-греко-латинских кубах и гипер-кубах. Вскоре после этого 1946–1947 гг.) Р. Рао рассмотрел их комбинаторные свойства. Дальнейшему развитию теории латинских квадратов посвящены работы X. Манна A947–1950 гг.).

Исследования Р. Фишера, проводившиеся в связи с работами по агробиологии, знаменуют начало первого этапа развития методов планирования эксперимента. Фишер разработал метод факторного планирования. Йегс предложил для этого метода простую вычислительную схему. Факторное планирование получило широкое распространение. Особенностью полного факторного эксперимента является необходимость ставить сразу большое число опытов.

В 1945 г. Д. Финни ввел дробные реплики от факторного эксперимента. Это позволило резко сократить число опытов и открыло дорогу техническим приложениям планирования. Другая возможность сокращения необходимого числа опытов была показана в 1946 г. Р. Плакеттом и Д. Берманом, которые ввели насыщенные факторные планы.

В 1951 г. работой американских ученых Дж. Бокса и К. Уилсона начался новый этап развития планирования эксперимента.

Эта работа подытожила предыдущие. В ней ясно сформулирована и доведена до практических рекомендаций идея последовательного экспериментального определения оптимальных условий проведения процессов с использованием оценки коэффициентов степенных разложений методом наименьших квадратов, движения по градиенту и отыскания интерполяционного полинома (степенного ряда) в области экстремума функции отклика («почти стационарной» области).

В 1954–1955 гг. Дж. Бокс, а затем Дж. Бокс и П. Юл показали, что планирование эксперимента можно использовать при исследовании физико-химических механизмов процессов, если априори высказаны одна или несколько возможных гипотез. Здесь планирование эксперимента пересекалось с исследованиями по химической кинетике. Интересно отметить, что кинетику можно рассматривать как метод описания процесса с помощью дифференциальных уравнений, традиции которого восходят к И. Ньютону. Описание процесса дифференциальными уравнениями, называемое детерминистическим, нередко противопоставляется статистическим моделям.

Бокс и Дж. Хантер сформулировали принцип ротатабельности для описания «почти стационарной» области, развивающейся в настоящее время в важную ветвь теории планирования эксперимента. В той же работе показана возможность планирования с разбиением на ортогональные блоки, указанная ранее независимо де Бауном.

Дальнейшим развитием этой идеи было планирование, ортогональное к неконтролируемому временному дрейфу, которое следует рассматривать как важное открытие в экспериментальной технике – значительное увеличение возможностей экспериментатора.


2. Математическое планирование эксперимента в научных исследованиях

2.1 Основные понятия и определения

Под экспериментом будем понимать совокупность операций совершаемых над объектом исследования с целью получения информации о его свойствах. Эксперимент, в котором исследователь по своему усмотрению может изменять условия его проведения, называется активным экспериментом. Если исследователь не может самостоятельно изменять условия его проведения, а лишь регистрирует их, то это пассивный эксперимент.

Важнейшей задачей методов обработки полученной в ходе эксперимента информации является задача построения математической модели изучаемого явления, процесса, объекта. Ее можно использовать и при анализе процессов и при проектировании объектов. Можно получить хорошо аппроксимирующую математическую модель, если целенаправленно применяется активный эксперимент. Другой задачей обработки полученной в ходе эксперимента информации является задача оптимизации, т.е. нахождения такой комбинации влияющих независимых переменных, при которой выбранный показатель оптимальности принимает экстремальное значение.

Опыт – это отдельная экспериментальная часть.

План эксперимента – совокупность данных определяющих число, условия и порядок проведения опытов.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Пусть интересующее нас свойство (Y) объекта зависит от нескольких (n ) независимых переменных (Х 1 , Х 2 , …, Х n ) и мы хотим выяснить характер этой зависимости – Y=F(Х 1 , Х 2 , …, Х n) , о которой мы имеем лишь общее представление. Величина Y – называется «отклик», а сама зависимость Y=F(Х 1 , Х 2 , …, Х n) – «функция отклика».

Отклик должен быть определен количественно. Однако могут встречаться и качественные признаки Y . В этом случае возможно применение рангового подхода. Пример рангового подхода – оценка на экзамене, когда одним числом оценивается сложный комплекс полученных сведений о знаниях студента.

Независимые переменные Х 1 , Х 2 , …, Х n – иначе факторы, также должны иметь количественную оценку. Если используются качественные факторы, то каждому их уровню должно быть присвоено какое-либо число. Важно выбирать в качестве факторов лишь независимые переменные, т.е. только те которые можно изменять, не затрагивая другие факторы. Факторы должны быть однозначными. Для построения эффективной математической модели целесообразно провести предварительный анализ значимости факторов (степени влияния на функцию), их ранжирование и исключить малозначащие факторы.

Диапазоны изменения факторов задают область определения Y . Если принять, что каждому фактору соответствует координатная ось, то полученное пространство называется факторным пространством. При n=2 область определения Y представляется собой прямоугольник, при n=3 – куб, при n >3 – гиперкуб.

При выборе диапазонов изменения факторов нужно учитывать их совместимость, т.е. контролировать, чтобы в этих диапазонах любые сочетания факторов были бы реализуемы в опытах и не приводили бы к абсурду. Для каждого из факторов указывают граничные значения

, i =1,… n .

Регрессионный анализ функции отклика предназначен для получения ее математической модели в виде уравнения регрессии

где В 1 , …, В m – некоторые коэффициенты; е – погрешность.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

· планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

· планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

· планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

· планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

· планирование при изучении динамических процессов и т.д.

Инициатором применения планирования эксперимента является Рональд А. Фишер, другой автор известных первых работ – Френк Йетс. Далее идеи планирования эксперимента формировались в трудах Дж. Бокса, Дж. Кифера. В нашей стране – в трудах Г.К. Круга, Е.В. Маркова и др.

В настоящее время методы планирования эксперимента заложены в специализированных пакетах, широко представленных на рынке программных продуктов, например: StatGrapfics, Statistica, SPSS, SYSTAT и др.

2.2 Представление результатов экспериментов

При использовании методов планирования эксперимента необходимо найти ответы на 4 вопроса:

· Какие сочетания факторов и сколько таких сочетаний необходимо взять для определения функции отклика?

· Как найти коэффициенты В 0 , В 1 , …, B m ?

· Как оценить точность представления функции отклика?

· Как использовать полученное представление для поиска оптимальных значений Y ?

Геометрическое представление функции отклика в факторном пространстве Х 1 , Х 2 , …, Х n называется поверхностью отклика (рис. 1).


Рис. 1. Поверхность отклика

Если исследуется влияние на Y лишь одного фактора Х 1 , то нахождение функции отклика – достаточно простая задача. Задавшись несколькими значениями этого фактора, в результате опытов получаем соответствующие значения Y и график Y =F(X) (рис. 2).

Рис. 2. Построение функции отклика одной переменной по опытным данным

По его виду можно подобрать математическое выражение функции отклика. Если мы не уверены, что опыты хорошо воспроизводятся, то обычно опыты повторяют несколько раз и получают зависимость с учетом разброса опытных данных.

Если факторов два, то необходимо провести опыты при разных соотношениях этих факторов. Полученную функцию отклика в 3 х -мерном пространстве (рис. 1) можно анализировать, проводя ряд сечений с фиксированными значениями одного из факторов (рис. 3). Вычлененные графики сечений можно аппроксимировать совокупностью математических выражений.

Рис. 3. Сечения поверхности отклика при фиксированных откликах (а) и переменных (б, в)

При трех и более факторах задача становится практически неразрешимой. Если и будут найдены решения, то использовать совокупность выражений достаточно трудно, а часто и не реально.

2.3 Применение математического планирования эксперимента в научных исследованиях

В современной математической теории оптимального планирования эксперимента существует 2 основных раздела:

1. планирование эксперимента для изучения механизмов сложных процессов и свойств многокомпонентных систем.

2. планирование эксперимента для оптимизации технологических процессов и свойств многокомпонентных систем.

Планирование эксперимента – это выбор числа опытов и условий их проведения необходимых и достаточных для решения поставленной задачи с требуемой точностью.

Эксперимент, который ставится для решений задач оптимизации, называется экстремальным. Примерами задач оптимизации являются выбор оптимального состава многокомпонентных смесей, повышение производительности действующей установки, повышение качества продукции и снижение затрат на её получение. Прежде чем планировать эксперимент необходимо сформулировать цель исследования. От точной формулировки цели зависит успех исследования. Необходимо также удостовериться, что объект исследования соответствует предъявляемым ему требованиям. В технологическом исследовании целью исследования при оптимизации процесса чаще всего является повышение выхода продукта, улучшение качества, снижение себестоимости.

Эксперимент может проводиться непосредственно на объекте или на его модели. Модель отличается от объекта не только масштабом, а иногда природой. Если модель достаточно точно описывает объект, то эксперимент на объекте может быть перенесён на модель. Для описания понятия «объект исследования» можно использовать представление о кибернетической системе, которая носит название чёрный ящик.


Стрелки справа изображают численные характеристики целей исследования и называются выходными параметрами ( y ) или параметрами оптимизации .

Для проведения эксперимента необходимо воздействовать на поведение чёрного ящика. Все способы воздействия обозначаются через «x» и называются входными параметрами или факторами . Каждый фактор может принимать в опыте одно из нескольких значений, и такие значения называются уровнями . Фиксированный набор уровней и факторов определяет одно из возможных состояний чёрного ящика, одновременно они являются условиями проведения одного из возможных опытов. Результаты эксперимента используются для получения математической модели объекта исследования. Использование для объекта всех возможных опытов приводит к абсурдно большим экспериментам. В связи с этим эксперименты необходимо планировать.

Задачей планирования является выбор необходимых для эксперимента опытов, методов математической обработки их результатов и принятия решений. Частный случай этой задачи – планирование экстремального эксперимента. То есть эксперимента поставленного с целью поиска оптимальных условий функционирования объекта. Таким образом, планирование экстремального эксперимента – это выбор количества и условий проведения опытов, минимально необходимых для отыскания оптимальных условий. При планировании эксперимента объект исследования должен обладать обязательными свойствами:

1.управляемым

2.результаты эксперимента должны быть воспроизводимыми.

Эксперимент называется воспроизводимым , если при фиксированных условиях опыта получается один и тот же выход в пределах заданной относительно небольшой ошибки эксперимента (2%-5%). Эксперимент проводят при выборе некоторых уровней для всех факторов, затем он повторяется через неравные промежутки времени. И значения параметров оптимизации сравниваются. Разброс этих параметров характеризует воспроизводимость результатов. Если он не превышает заранее заданной величины, то объект удовлетворяет требованию воспроизводимости результатов.

При планировании эксперимента активное вмешательство предполагает процесс и возможность выбора в каждом опыте тех факторов, которые представляют интерес. Экспериментальное исследование влияния входных параметров (факторов) на выходные может производиться методом пассивного или активного эксперимента. Если эксперимент сводится к получению результатов наблюдения за поведение системы при случайных изменениях входных параметров, то он называется пассивным . Если же при проведении эксперимента входные параметры изменяются по заранее заданному плану, то такой эксперимент называется активным. Объект, на котором возможен активный эксперимент, называется управляемым. На практике не существует абсолютно управляемых объектов. На реальный объект обычно действуют как управляемый, так и неуправляемый факторы. Неуправляемые факторы действуют на воспроизводимость эксперимента. Если все факторы неуправляемы, возникает задача установления связи между параметром оптимизации и факторами по результатам наблюдений или по результатам пассивного эксперимента. Возможна также плохая воспроизводимость изменения факторов во времени.


3. Параметры оптимизации

3.1 Виды параметров оптимизации

Параметр оптимизации – это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Множество значений, которые может принимать параметр оптимизации, называется областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции – это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число кровяных телец в пробе крови – вот примеры параметров с дискретной областью определения, ограниченной снизу.

В зависимости от объекта и цели исследования параметры оптимизации могут быть весьма разнообразными (рис. 1).

Прокомментируем некоторые элементы схемы. Экономические параметры оптимизации, такие, как прибыль, себестоимость и рентабельность, обычно используются при исследовании действующих промышленных объектов, тогда как затраты на эксперимент имеет смысл оценивать в любых исследованиях, в том числе и лабораторных. Если цена опытов одинакова, затраты на эксперимент» пропорциональны числу опытов, которые необходимо поставить для решения данной задачи. Это в значительной мере определяет выбор плана эксперимента.

Среди технико-экономических параметров наибольшее распространение имеет производительность. Такие параметры, как долговечность, надежность и стабильность, связаны с длительными наблюдениями. Имеется некоторый опыт их использования при изучении дорогостоящих ответственных объектов, например радиоэлектронной аппаратуры.

Почти во всех исследованиях приходится учитывать количество и качество получаемого продукта. Как меру количества продукта используют выход, например, процент выхода готовой продукции.

Показатели качества чрезвычайно разнообразны. В нашей схеме они сгруппированы по видам свойств. Характеристики количества и качества продукта образуют группу технико-технологических параметров.

В группе «прочие» сгруппированы различные параметры, которые реже встречаются, но не являются менее важными. Сюда попали статистические параметры, используемые для улучшения характеристик случайных величин или случайных функций.

3.2 Требования к параметру оптимизации

Параметр оптимизации – это признак, по которому мы хотим оптимизировать процесс. Он должен быть количественным, задаваться числом. Мы должны уметь его измерять при любой возможной комбинации выбранных уровней факторов. Множество значений, которые может принимать параметр оптимизации, будем называть областью его определения. Области определения могут быть непрерывными и дискретными, ограниченными и неограниченными. Например, выход реакции – это параметр оптимизации с непрерывной ограниченной областью определения. Он может изменяться в интервале от 0 до 100%. Число бракованных изделий, число зерен на шлифе сплава, число кровяных телец в пробе крови – вот примеры параметров с дискретной областью определения, ограниченной снизу.

Уметь измерять параметр оптимизации – это значит располагать подходящим прибором. В ряде случаев такого прибора может не существовать или он слишком дорог. Если нет способа количественного измерения результата, то приходится воспользоваться приемом, называемым ранжированием (ранговым подходом). При этом параметрам оптимизации присваиваются оценки – ранги по заранее выбранной шкале: двухбалльной, пятибалльной и т.д. Ранговый параметр имеет дискретную ограниченную область определения. В простейшем случае область содержит два значения (да, нет; хорошо, плохо). Это может соответствовать, например, годной продукции и браку.

Ранг – это количественная оценка параметра оптимизации, но она носит условный (субъективный) характер. Мы ставим в соответствие качественному признаку некоторое число – ранг. Для каждого физически измеряемого параметра оптимизации можно построить ранговый аналог. Потребность в построении такого аналога возникает, если имеющиеся в распоряжении исследователя численные характеристики неточны или неизвестен способ построения удовлетворительных численных оценок. При прочих равных условиях всегда нужно отдавать предпочтение физическому измерению, так как ранговый подход менее чувствителен и с его помощью трудно изучать тонкие эффекты.

Пример: Технолог разработал новый вид продукта. Вам необходимо оптимизировать этот процесс.

Цель процесса – получение вкусного продукта, но такая формулировка цели еще не дает возможности приступить к оптимизации: необходимо выбрать количественный критерий, характеризующий степень достижения цели. Можно принять следующее решение: очень вкусный продукт получает отметку 5, просто вкусный продукт – отметку 4 и т.д.

Можно ли после такого решения переходить к оптимизации процесса? Нам важно количественно оценить результат оптимизации. Решает ли отметка эту задачу? Конечно, потому что, как мы договорились, отметка 5 соответствует очень вкусному продукту и т.д. Другое дело, что этот подход, называемый ранговым, часто оказывается грубым, нечувствительным. Но возможности такой количественной оценки результатов не должна вызывать сомнений.

Следующее требование: параметр оптимизации должен выражаться одним числом. Например: регистрация показания прибора.

Еще одно требование, связанное с количественной природой параметра оптимизации, – однозначность в статистическом смысле. Заданному набору значений факторов должно соответствовать одно с точностью до ошибки эксперимента значение параметра оптимизации. (Однако обратное неверно: одному и тому же значению параметра могут соответствовать разные наборы значений факторов.)

Для успешного достижения цели исследования необходимо, чтобы параметр оптимизации действительно оценивал эффективность функционирования системы в заранее выбранном смысле. Это требование является главным, определяющим корректность постановки задачи.

Представление об эффективности не остается постоянным в ходе исследования. Оно меняется по мере накопления информации и в зависимости от достигнутых результатов. Это приводит к последовательному подходу при выборе параметра оптимизации. Так, например, на первых стадиях исследования технологических процессов в качестве параметра оптимизации часто используется выход продукта. Однако в дальнейшем, когда возможность повышения выхода исчерпана, нас начинают интересовать такие параметры, как себестоимость, чистота продукта и т.д.

Говоря об оценке эффективности функционирования системы, важно помнить, что речь идет о системе в целом. Часто система состоит из ряда подсистем, каждая из которых может оцениваться своим локальным параметром оптимизации.

Следующее требование к параметру оптимизации – требование универсальности или полноты. Под универсальностью параметра оптимизации понимается его способность всесторонне характеризовать объект. В частности, технологические параметры оптимизации недостаточно универсальны: они не учитывают экономику. Универсальностью обладают, например, обобщенные параметры оптимизации, которые строятся как функции от нескольких частных параметров.

Желательно, чтобы параметр оптимизации имел физический смысл, был простым и легко вычисляемым.

Требование физического смысла связано с последующей интерпретацией результатов эксперимента.

Таким образом, параметр оптимизации должен быть:

– эффективным с точки зрения достижения цели;

– универсальным;

– количественным и выражаться одним числом;

– статистически эффективным;

– имеющим физический смысл, простым и легко вычисляемым.

В тех случаях, когда возникают трудности с количественной оценкой параметров оптимизации, приходится обращаться к ранговому подходу. В ходе исследования могут меняться априорные представления об объекте исследования, что приводит к последовательному подходу при выборе параметра оптимизации.

Из многих параметров, характеризующих объект исследования, только один, часто обобщенный, может служить параметром оптимизации. Остальные рассматриваются как ограничения.


4. Факторы оптимизации

4.1 Определение фактора

Фактором называется измеряемая переменная величина, принимающая в некоторый момент времени определенное значение. Факторы соответствуют способам воздействия на объект исследования.

Так же, как и параметр оптимизации, каждый фактор имеет область определения. Фактор считают заданным, если вместе с его названием указана область его определения.

Под областью определения понимается совокупность всех значений, которые в принципе может принимать данный фактор.

Совокупность значений фактора, которая используется в эксперименте, является подмножеством из множества значений, образующих область определения. Область определения может быть непрерывной и дискретной. Однако в основном, в задачах планирования эксперимента, используются дискретные области определения. Так, для факторов с непрерывной областью определения, таких, как температура, время, количество вещества и т.п., всегда выбираются дискретные множества уровней.

В практических задачах области определения факторов, как правило, ограничены. Ограничения могут носить принципиальный либо технический характер.

Факторы классифицируют в зависимости от того, является ли фактор переменной величиной, которую можно оценивать количественно: измерять, взвешивать, титровать и т.п., или же он – некоторая переменная, характеризующаяся качественными свойствами.

Факторы разделяются на количественные и качественные.

Качественные факторы – это разные вещества, разные технологические способы, аппараты, исполнители и т.д.

Хотя качественным факторам не соответствует числовая шкала в том смысле, как это понимается для количественных факторов, однако можно построить условную порядковую шкалу, которая ставит в соответствие уровням качественного фактора числа натурального ряда, т.е. производит кодирование. Порядок уровней может быть произволен, но после кодирования он фиксируется.

Качественным факторам не соответствует числовая шкала, и порядок уровней факторов не играет роли.

Время реакции, температура, концентрация реагирующих веществ, скорость подачи веществ, величина рН – это примеры наиболее часто встречающихся количественных факторов. Различные реагенты, адсорбенты, вулканизующие агенты, кислоты, металлы являются примером уровней качественных факторов.

4.2 Требования, предъявляемые к факторам при планировании эксперимента

При планировании эксперимента факторы должны быть управляемыми. Это значит, что экспериментатор, выбрав нужное значение фактора, может его поддерживать постоянным в течение всего опыта, т.е. может управлять фактором. Планировать эксперимент можно только в том случае, если уровни факторов подчиняются воле экспериментатора.

Пример: Вы изучаете процесс синтеза аммиака. Колонна синтеза установлена на открытой площадке. Является ли температура воздуха фактором, который можно включить в планирование эксперимента?

Температура воздуха – фактор неуправляемый. Мы еще не научились делать погоду по заказу. А в планировании могут участвовать только те факторы, которыми можно управлять, – устанавливать и поддерживать на выбранном уровне в течение опыта или менять по заданной программе. Температурой окружающей среды в данном случае управлять невозможно. Ее можно только контролировать.

Чтобы точно определить фактор, нужно указать последовательность действий (операций), с помощью которых устанавливаются его конкретные значения (уровни). Такое определение фактора будем называть операциональным. Так, если фактором является давление в некотором аппарате, то совершенно необходимо указать, в какой точке и с помощью какого прибора оно измеряется и как оно устанавливается. Введение операционального определения обеспечивает однозначное понимание фактора.

С операциональным определением связаны выбор размерности фактора и точность его фиксирования.

Точность замера факторов должна быть возможно более высокой. Степень точности определяется диапазоном изменения факторов. При изучении процесса, который длится десятки часов, нет необходимости учитывать доли минуты, а в быстрых процессах необходимо учитывать, быть может, доли секунды.

Факторы должны быть непосредственными воздействиями на объект. Факторы должны быть однозначны. Трудно управлять фактором, который, является функцией других факторов. Но в планировании могут участвовать сложные факторы, такие, как соотношения между компонентами, их логарифмы и т.п.

При планировании эксперимента обычно одновременно изменяется несколько факторов. Поэтому очень важно сформулировать требования, которые предъявляются к совокупности факторов. Прежде всего выдвигается требование совместимости. Совместимость факторов означает, что все их комбинации осуществимы и безопасны. Это очень важное требование.

При планировании эксперимента важна независимость факторов, т.е. возможность установления фактора на любом уровне вне зависимости от уровней других факторов. Если это условие невыполнимо, то невозможно планировать эксперимент.

Таким образом, установили, что факторы – это переменные величины, соответствующие способам воздействия внешней среды на объект.

Они определяют как сам объект, так и его состояние. Требования к факторам: управляемость и однозначность.

Управлять фактором – это значит установить нужное значение и поддерживать его постоянным в течение опыта или менять по заданной программе. В этом состоит особенность «активного» эксперимента. Планировать эксперимент можно только в том случае, если уровни факторов подчиняются воле экспериментатора.

Факторы должны непосредственно воздействовать на объект исследования.

Требования к совокупности факторов: совместимость и отсутствие линейной корреляции. Выбранное множество факторов должно быть достаточно полным. Если какой-либо существенный фактор пропущен, это приведет к неправильному определению оптимальных условий или к большой ошибке опыта. Факторы могут быть количественными и качественными.


5. Ошибки опыта

Изучение всех влияющих на исследуемый объект факторов одновременно провести невозможно, поэтому в эксперименте рассматривается их ограниченное число. Остальные активные факторы стабилизируются, т.е. устанавливаются на каких-то одинаковых для всех опытов уровнях.

Некоторые факторы не могут быть обеспечены системами стабилизации (например, погодные условия, самочувствие оператора и т.д.), другие же стабилизируются с какой-то погрешностью (например, содержание какого-либо компонента в среде зависит от ошибки при взятии навески и приготовления раствора). Учитывая также, что измерение параметра у осуществляется прибором, обладающим какой-то погрешностью, зависящей от класса точности прибора, можно прийти к выводу, что результаты повторностей одного и того же опыта у к будут приближенными и должны отличаться один от другого и от истинного значения выхода процесса. Неконтролируемое, случайное изменение и множества других влияющих на процесс факторов вызывает случайные отклонения измеряемой величины у к от ее истинного значения – ошибку опыта.

Каждый эксперимент содержит элемент неопределенности вследствие ограниченности экспериментального материала. Постановка повторных (или параллельных) опытов не дает полностью совпадающих результатов, потому что всегда существует ошибка опыта (ошибка воспроизводимости). Эту ошибку и нужно оценить по параллельным опытам. Для этого опыт воспроизводится по возможности в одинаковых условиях несколько раз и затем берется среднее арифметическое всех результатов. Среднее арифметическое у равно сумме всех n отдельных результатов, деленной на количество параллельных опытов n:


Отклонение результата любого опыта от среднего арифметического можно представить как разность y 2 – , где y 2 – результат отдельного опыта. Наличие отклонения свидетельствует об изменчивости, вариации значений повторных опытов. Для измерения этой изменчивости чаще всего используют дисперсию.

Дисперсией называется среднее значение квадрата отклонений величины от ее среднего значения. Дисперсия обозначается s 2 и выражается формулой:

где (n-1) – число степеней свободы, равное количеству опытов минус единица. Одна степень свободы использована для вычисления среднего.

Корень квадратный из дисперсии, взятый с положительным знаком, называется средним квадратическим отклонением, стандартом или квадратичной ошибкой:

Ошибка опыта является суммарной величиной, результатом многих ошибок: ошибок измерений факторов, ошибок измерений параметра оптимизации и др. Каждую из этих ошибок можно, в свою очередь, разделить на составляющие.

Все ошибки принято разделять на два класса: систематические и случайные (рисунок 1).

Систематические ошибки порождаются причинами, действующими регулярно, в определенном направлении. Чаще всего эти ошибки можно изучить и определить количественно. Систематическая ошибка – это ошибка, которая остаётся постоянно или закономерно изменяется при повторных измерениях одной и той же величины. Эти ошибки появляются вследствие неисправности приборов, неточности метода измерения, какого либо упущения экспериментатора, либо использования для вычисления неточных данных. Обнаружить систематические ошибки, а также устранить их во многих случаях нелегко. Требуется тщательный разбор методов анализа, строгая проверка всех измерительных приборов и безусловное выполнение выработанных практикой правил экспериментальных работ. Если систематические ошибки вызваны известными причинами, то их можно определить. Подобные погрешности можно устранить введением поправок.

Систематические ошибки находят, калибруя измерительные приборы и сопоставляя опытные данные с изменяющимися внешними условиями (например, при градуировке термопары по реперным точкам, при сравнении с эталонным прибором). Если систематические ошибки вызываются внешними условиями (переменной температуры, сырья и т.д.), следует компенсировать их влияние.

Случайными ошибками называются те, которые появляются нерегулярно, причины, возникновения которых неизвестны и которые невозможно учесть заранее. Случайные ошибки вызываются и объективными причинами и субъективными. Например, несовершенством приборов, их освещением, расположением, изменением температуры в процессе измерений, загрязнением реактивов, изменением электрического тока в цепи. Когда случайная ошибка больше величины погрешности прибора, необходимо многократно повторить одно и тоже измерение. Это позволяет сделать случайную ошибку сравнимой с погрешностью вносимой прибором. Если же она меньше погрешности прибора, то уменьшать её нет смысла. Такие ошибки имеют значение, которое отличается в отдельных измерениях. Т.е. их значения могут быть неодинаковыми для измерений сделанных даже в одинаковых условиях. Поскольку причины, приводящие к случайным ошибкам неодинаковы в каждом эксперименте, и не могут быть учтены, поэтому исключить случайные ошибки нельзя, можно лишь оценить их значения. При многократном определении какого-либо показателя могут встречаться результаты, которые значительно отличаются от других результатов той же серии. Они могут быть следствием грубой ошибки, которая вызвана невнимательностью экспериментатора.

Систематические и случайные ошибки состоят из множества элементарных ошибок. Для того чтобы исключать инструментальные ошибки, следует проверять приборы перед опытом, иногда в течение опыта и обязательно после опыта. Ошибки при проведении самого опыта возникают вследствие неравномерного нагрева реакционной среды, разного способа перемешивания и т.п.

При повторении опытов такие ошибки могут вызвать большой разброс экспериментальных результатов.

Очень важно исключить из экспериментальных данных грубые ошибки, так называемый брак при повторных опытах. Грубые ошибки легко обнаружить. Для выявления ошибок необходимо произвести измерения в других условиях или повторить измерения через некоторое время. Для предотвращения грубых ошибок нужно соблюдать аккуратность в записях, тщательность в работе и записи результатов эксперимента. Грубая ошибка должна быть исключена из экспериментальных данных. Для отброса ошибочных данных существуют определённые правила.

Например, используют критерий Стьюдента t(Р; f): Опыт считается бракованным, если экспериментальное значение критерия t по модулю больше табличного значения t(Р; f).

Если в распоряжении исследователя имеется экспериментальная оценка дисперсии S 2 (y k) с небольшим конечным числом степеней свободы, то доверительные ошибки рассчитываются с помощью критерий Стьюдента t(Р; f):

ε() = t (Р; f)* S(y k)/ = t (Р; f)* S()

ε(y k) = t(Р; f)* S(y k)


6. Результат прямого измерения – случайная величина, подчиняющаяся нормальному закону распределения

Результаты, которые получаются при экспериментальном исследовании какого-либо технологического процесса, зависят от целого ряда факторов. Поэтому результат исследования является случайной величиной, распределённой по нормальному закону распределения. Оно названо нормальным, т. к. именно это распределение для случайной величины является обычным и называется гаусовским или лапласским. Под распределением случайной величины понимают совокупность всех возможных значений случайной величины и соответствующих им вероятностей.

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующим им вероятностям.

При экспериментальном исследовании какого-либо технологического процесса измеряемый результат последнего является случайной величиной, на которую оказывает влияние огромное число факторов (изменение погодных условий, самочувствие оператора, неоднородность сырья, влияние износа измерительной и стабилизирующей аппаратуры и т.д. и т.п.). Именно поэтому результат исследования является случайной величиной, распределенной по нормальному закону. Однако если исследователь какой-либо активный фактор не заметил или отнес его к неактивным, а неконтролируемое изменение этого фактора может вызвать несоразмерно большое изменение эффективности процесса и параметра, характеризующего эту эффективность, то распределение вероятности последнего может нормальному закону не подчиниться.

Точно так же приведет к нарушению нормальности закона распределения наличие в массиве экспериментальных данных грубых ошибок. Именно поэтому в первую очередь проводят анализ на наличие в экспериментальных данных грубых ошибок с принятой доверительной вероятностью.

Случайная величина будет распределена по нормальному закону, если она представляет собой сумму очень большого числа взаимно зависимых случайных величин, влияния каждой из которых ничтожно мало. Если измерения искомой величины y проведены много раз, то результат можно наглядно представить, построив диаграмму, которая показывала бы, как часто получались те или иные значения. Такая диаграмма называется гистограммой. Что бы построить гистограмму нужно разбить весь диапазон измеренных значений на равные интервалы. И посчитать сколько раз каждая величина попадает в каждый интервал.

Если измерения продолжать до тех пор, пока число измеренных значений n не станет очень большим, то ширину интервала можно сделать очень малой. Гистограмма перейдёт в непрерывную прямую, которая называется кривой распределения .

В основе теории случайных ошибок лежат два предположения:

1.при большом числе измерений случайные погрешности одинаково велики, но с разными знаками встречаются одинаково часто;

2.большие (по абсолютной величине) погрешности встречаются реже, чем малые. Т. е. вероятность появления погрешности уменьшается с ростом её величины.

Согласно закону больших чисел при бесконечно большом числе измерений n, истинное значение измеряемой величины y равно среднеарифметическому значению всех результатов измерений ỹ

Для всех m-повторностей можно записать:

Разделив это уравнение на число повторностей m, получим после подстановки:

За экспериментальную оценку истинного значения (математического ожидания) критерия оптимальности у принимается среднеарифметическая оценка результатов всех т повторностей:

Если число m велико (m→∞), то будет справедливо равенство:

Таким образом, при бесконечно большом числе измерений истинное значение измеряемой величины y равно среднеарифметическому значению ỹ всех результатов произведённых измерений: y═ỹ, при m→∞.

При ограниченном числе измерений (m≠∞) среднеарифметическое значение y будет отличаться от истинного значения, т.е. равенство y═ỹ будет неточным, а приближённым: y≈ỹ и величину этого расхождения необходимо оценить.

Если в распоряжении исследователя имеется только единичный результат измерения y k , то оценка истинного значения измеряемой величины будет менее точной. чем среднеарифметическая оценка при любом числе повторностей: |y─ỹ|<|y-yk|.

Появление того или иного значения yk в процессе измерения является случайным событием. Функция плотности нормального распределения случайной величины характеризуется двумя параметрами:

· истинным значением y;

· среднеквадратичным отклонением σ.

Рисунок – 1а – кривая плотности нормального распределения; 1б –кривая плотности вероятности нормально распределенной случайной величины при различных дисперсиях

Плотность нормального распределения (рис. 1а) симметрична относительно y и достигает максимального значения при yk= y, стремится к 0 при увеличении.

Квадрат среднеквадратичного отклонения называется дисперсией случайной величины и является количественной характеристикой разброса результатов вокруг истинного значения y. Мера рассеяния результатов отдельных измерений yk от среднего значения ỹ должна выражаться в тех же единицах, то и значения измеряемой величины. В связи с этим в качестве показателя разброса гораздо чаще используют величину σ:

Значения этой величины определяют форму кривой распределения py. Площади под тремя кривыми одинаковы, но при малых значения σ кривые идут более круто и имеют большее значение py. С увеличением σ значение py уменьшается и кривая распределения растягивается вдоль оси y. Т.о. кривая 1 характеризует плотность распределения случайной величины, воспроизводимость которой в повторных измерениях лучше, чем воспроизводимость случайных величин имеющих плотность распределения 2, 4. На практике не возможно произвести слишком много замеров. Поэтому нельзя построить нормальное распределение, чтобы точно определить истинное значение y. В этом случае хорошим приближением к истинному значению можно считать ỹ, а достаточно точной оценкой ошибки выборочную дисперсию ρ²n, вытекающую из закона распределения, но относящуюся к конечному числу измерения. Такое название величины ρ²n объясняется тем, что из всего множества возможных значений yk, т.е. из генеральной совокупности выбирают лишь конечное число значений равное m, называемых выборкой, которая характеризуется выборочным средним значением и выборочной дисперсией.


7. Экспериментальные оценки истинных значений измеряемой случайной величины и её среднеквадратичного отклонения

Если в распоряжении исследователя находится конечное число независимых результатов повторности одного и того же опыта, то он может получить лишь экспериментальные оценки истинного значения и дисперсии результата опыта.

Оценки должны обладать следующими свойствами:

1.Несмещённости, проявляющейся в том, что теоретическое среднее совпадает с истинным значением измеряемого параметра.

2.Состоятельности, когда оценки при неограниченном увеличении числа измерений могут иметь сколь угодно малый доверительный интервал при доверительной вероятности.

3.Эффективности, проявляющейся в том, что из всех несмешанных оценок данная оценка будет иметь наименьшее рассеяние (дисперсию).

Экспериментальная оценка среднеквадратичного отклонения обозначается S с указанием в скобках символа анализируемой величины, т.е.

S (yk) – среднеквадратичного отклонение единичного результата.

S (y) – среднеквадратичное отклонение среднего результата.

Квадрат экспериментальной оценки среднеквадратичного отклонения S² является экспериментальной оценкой дисперсии:

Для обработки результатов наблюдения можно использовать следующую схему:

Определение среднего значения полученных результатов:


Определение отклонения от среднего значения для каждого результата:

Эти отклонения характеризуют абсолютную ошибку определения. Случайные ошибки имеют разные знаки, когда значение результата опыта превышает среднее значение, ошибка опыта считается положительной, когда значение результата опыта меньше среднего значения, ошибка считается отрицательной.

Чем точнее произведены измерения, тем ближе значение отдельных результатов и среднее значение.

Если по m результатам рассчитывают оценку истинного значения , а затем, используя те же результаты, рассчитывают оценки абсолютных отклонений:

то оценку дисперсии единичного результата находят по зависимости:

Разность между числом т независимых результатов у к и числом уравнений, в которых эти результаты уже были использованы для расчета неизвестных оценок, называют числом степеней свободы f :

Для оценки дисперсии эталонного процесса f=m.

Поскольку средняя оценка является более точной, чем единичная у к, дисперсия средних будет меньше дисперсииединичных результатов в m раз, если рассчитано по всем m единичным результатам у к :

Если в распоряжении исследователя имеется экспериментальная оценка дисперсии S 2 (y к) с небольшим конечным числом степеней свободы, то доверительные ошибки рассчитывают с помощью критерия Стьюдента t(P; f):

,

где Р – доверительная вероятность (Р=1-q, q– уровень значимости).

Проверка надёжности полученных результатов по критерию Стьюдента для проведенного числа опытов m при избранной доверительной вероятности (надёжности) Р=0,95; 0,99. Это значит, что 95% или 99% абсолютных отклонений результатов лежит в указанных пределах. Критерий t(P; f) с доверительной вероятностью Р показывает во сколько раз модуль разности между истинным значением определённой величины y и средним значением ỹ больше стандартного отклонения среднего результата.


8. Определение грубых ошибок среди результатов повторностей опыта

При статистическом анализе экспериментальных данных для процессов, негативный результат которых не создает ситуаций, опасных для жизни людей или утраты больших материальных ценностей, доверительная вероятность обычно принимают равной Р=0,95

Среди результатов y k повторностей опыта могут быть результаты, значительно отличающиеся от других. Это может быть связано либо с какой-то грубой ошибкой, либо с неизбежным случайным влиянием неучтенных факторов на результат данной повторности опыта.

Признаком наличия «выделяющегося» результата среди других является большая величина отклонения │▲y k │= y k – yˉ.

Если ▲y k >y пред, то такие результаты относятся к грубым ошибкам. Предельное абсолютное отклонение определяют в зависимости от сложившейся ситуации различными методами. Если, например, проводиться статистический анализ экспериментальных данных опыта с эталонным процессом (известно истинное значение результата опыта и ▲y k =y k -y) и если исследователь имеет в своем распоряжении оценку дисперсии S 2 (y k) с таким большим числом степеней свободы, то может принять f→∞ и S 2 (y k)=σ 2 , то для определения грубых ошибок можно применить правило «2-х сигм»: все результаты, абсолютные отклонения которых по модулю превышают величину двух среднеквадратичных отклонений с надежностью 0,95 считаются грубыми ошибками и исключаются из массива экспериментальных данных (вероятность исключения достоверных результатов равна уровню значимости q=0,05).

Если доверительная вероятность отличается от 0,95 то пользуются правилом «одной сигмы» (Р=0,68) или правилом «трех сигм» (Р=0,997), или по заданной вероятности Р=2Ф(t) – 1 находят Ф(t) по справочным данным и параметр t, по которому и рассчитывают абсолютное отклонение:

Если в распоряжении исследователя имеется лишь приближенная оценка дисперсии с небольшим (конечным) числом степеней свободы, то применение правила «сигм» может привести либо к необоснованному исключению достоверных результатов либо к необоснованному оставлению ошибочных результатов.

В этой ситуации для определения грубых ошибок можно применить критерий максимального отклонения r max (P, m), взятый из соответствующих таблиц. Для этого r max сравнивают с величиной r, равной

(22)

Если r > r max , то данный результат должен исключаться из дальнейшего анализа, оценка y ˉ должна быть пересчитана, изменяются абсолютные отклонения ▲y k и соответственно оценка дисперсии S 2 (y k) и S 2 (yˉ). Анализ на грубые ошибки повторяют при новых значениях оценок yˉ и S 2 (y k), прекращают его при r <= r max .

При пользовании формулой (22) следует применять оценку дисперсии, полученную по результатам повторностей опыта, среди которых находится сомнительный результат.

Для определения грубых ошибок существуют и другие методы, среди которых наиболее быстрым является метод «по размаху» , основанный на оценке максимальных различий полученных результатов. Анализ по этому методу проводят в такой последовательности:

1)располагают результаты y k в упорядоченный ряд, в котором максимальному результату присваивается номер первый (y1), а максимальному – наибольший (y m).

2)Если результатом, вызывающим сомнение, будет y m , рассчитывают отношение

(23)

если сомнительным результатом будет y 1 – отношение

3)при заданном уровни значимости q и известном числе повторностей m по приложению 6 находят табличное значение критерия α Т.

4)если α > α Т, то подозреваемый результат является ошибочным и его следует исключить.

После исключения грубой ошибки находят по таблице новую величину α Т и решают судьбу следующего «подозреваемого» результата, сравнивая α Т и рассчитанный для него α.

Если есть основание предполагать, что 2 наибольших (2 наименьших) результата являются «промахами», то их можно выявить в один прием, используя соответствующий столбец таблицы приложения 6 для определения α Т и рассчитывая α по формуле:

(25)


Средневзвешенные оценки дисперсии. Анализ однородности исходных оценок дисперсии

Если в распоряжении экспериментатора имеются результаты многократных измерений величин критерия оптимальности в опытах при различных условиях ведения процесса, то появляется возможность расчета средневзвешенной оценки дисперсии единичного результата, единой для всех опытов эксперимента.

В каждом из N опытов (номер опыта и = 1+ N ) оценка дисперсии единичного результата равна

где т и – число повторностей и-го опыта.

Средневзвешенная оценка дисперсии единичного результата рассчитывается по всем оценкам дисперсии единичного результата опытов:

а) при различных т и


где - число степеней свободы средневзвешенной оценки дисперсии; т и – 1 = f u – «вес» соответствующей и-ой оценки дисперсии, равный числу степеней свободы f u ;

б) прит и = т = const

где N(m-1)=f– число степеней свободы средневзвешенной оценки дисперсии.

Прежде чем пользоваться соотношениями (28) и (29) для расчета средневзвешенных уточненных оценок дисперсии (чем больше число степеней свободы, тем более точной будет оценка дисперсии), надо доказать однородность исходных оценок дисперсии.

Определение «однородные» в статистике означает «являющиеся оценкой одного и того же параметра» (в данном случае – дисперсии σ 2).

Если измеряемая случайная величина у ик распределена по нормальному закону во всем исследуемом диапазоне, то независимо от значений и дисперсия σ не будет изменять своей величины и оценки этой дисперсии должны быть однородными. Однородность этих оценок проявляется в том, что они могут отличаться друг от друга лишь незначительно, в пределах, зависящих от принятой вероятности и объема экспериментальных данных.

Если т и = т и f = const, то однородность оценок дисперсий можно проанализировать при помощи критерия Кохрена G kp . Вычисляют отношение максимальной дисперсии S 2 ( y uk ) max к сумме всех дисперсий


и сравнивают это отношение с величиной критерия Кохрена G kp ( P ; f ; N ). Если G < Gkp , то оценки однородны.

Таблица значений критерия Кохрена в зависимости от числа степеней свободы числителя f u , числа сравниваемых дисперсий N и принятого уровня значимости q = 1 – Р дана в приложении.

Если число повторностей в опытах различно ( f lt const), однородность оценок дисперсии можно проанализировать с помощью критерия Фишера F Т. Для этого из N оценок дисперсии выбирают 2: максимальную S 2 (y uk) max и минимальную S 2 (y uk) min . Если вычисленное значение F их отношения меньше Ft ,

то все N оценок дисперсии будут однородны.

Значения критерия Фишера F T даны в приложении в зависимости от принятого уровня значимости q и числа степеней свободы f 1 иf 2 оценок S 2 (y uk) max и S 2 (y uk) min соответственно.

Если оценки дисперсии непосредственно измеряемого параметра у оказались неоднородными, т.е. оценками различных дисперсий, то средневзвешенная оценка не может быть рассчитана. И кроме того, величины у к уже нельзя считать подчиняющимися нормальному закону, при котором дисперсия может быть лишь одной и неизменной при любом у.

Причиной нарушения нормального закона распределения может быть наличие оставшихся грубых ошибок (анализ на грубые ошибки либо не проводился, либо проведен недостаточно тщательно).

Другой причиной может быть наличие активного фактора, ошибочно отнесенного исследователем к неактивным и не снабженного системой стабилизации. Поскольку условия изменились, этот фактор стал значимо влиять на процесс.


9. Планирование и обработка результатов однофакторных экспериментов

9.1 Формализация экспериментальных данных методом наименьших квадратов

Влияние какого-либо фактора на выход процесса может быть выражено зависимостью у = f(C). Если конкретному значению С и соответствует единственное значение у и, то такая зависимость называется функциональной. Эту зависимость получают путем строгих логических доказательств, не нуждающихся в опытной проверке. Например, площадь квадрата ω может быть представлена функциональной зависимостью от размера стороны квадрата а: ω = а 2 .

Если у и остается неизменным в то время как С и изменяется, то у не зависит от С. Например, угол при вершине квадрата равный π/2, не зависит от размера стороны а и.

Если для оценки величин у и и С и используются данные наблюдений, величины случайные, то функциональная зависимость между ними существовать не может.

Измерив отдельно сторону а и площадь ω квадрата, можно убедиться, что полученные результаты не могут быть представлены с абсолютной точностью зависимостью ω = а 2 .

К формализации экспериментальных данных, т.е. построению по ним описывающей процесс зависимости, исследователь прибегает, когда не может составить эвристическую (детерминированную) математическую модель из-за недостаточного понимания механизма процесса или его чрезмерной сложности.

Полученная в результате формализации экспериментальных данных эмпирическая математическая модель имеет меньшую ценность, чем отражающая механизм процесса эвристическая математическая модель, которая может предсказать поведение объекта за пределами изученного диапазона изменения переменных.

Приступая к эксперименту с целью получения эмпирической математической модели, исследователь должен определить необходимый объем опытных данных с учетом количества принятых к исследованию факторов, воспроизводимости процесса, предполагаемой структуры модели и обеспечения возможности проверки адекватности уравнения.

Если по результатам эксперимента, состоящего из двух опытов, получено линейное однофакторное уравнение у = b 0 + b 1 С , то построенная по этому уравнению прямая обязательно пройдет через эти экспериментальные точки. Следовательно, для того чтобы проверить, насколько хорошо эта зависимость описывает данный процесс, надо поставить опыт хотя бы еще в одной точке. Этот дополнительный опыт дает возможность осуществить корректную процедуру проверки пригодности уравнения. Однако проверку обычно проводят не по одной дополнительной точке, которая не участвовала в определении коэффициентов уравнения, а по всем экспериментальным точкам, число которых (N) должно превышать число коэффициентов уравнения (N ")

Так как N > N ", решение такой системы требует специального подхода.

9.2 Симметричный и равномерный план однофакторного эксперимента

Задача в значительной степени упростится, если при планировании эксперимента, можно будет обеспечить условие:

При натуральной размерности факторов выполнить условие ΣC u =0 невозможно, т. к. в этом случае величина фактора должна иметь как положительные значения, так и отрицательные.

Если же точку отсчета величины фактора перенести в середину диапазона изменения фактора (центр эксперимента)

то появляется возможность удовлетворить условию в виде , где С " u =С u – С 0.

Для равномерного плана С u – С (u -1) = λ = const,

где λ – интервал варьирования фактора.

Условие может быть выполнено, если для обозначения величины фактора использовать безразмерные выражения:

отсюда легко увидеть, что условие эквивалентно условию и такие планы называют симметричными.

При составлении плана диапазон фактора ориентировочно ограничивают величинами С min и С max , назначенными после изучения литературы по теме исследования. От опыта к опыту предусматривают такое изменение величины фактора, которое позволило бы достоверно уловить имеющимися в распоряжении исследователя приборами изменение выхода процесса .

С учетом величины λ и диапазона (С max – C min) определяют число опытов, округляя его до нечетного N:


.

Затем определяют величины факторов в каждом из N опытов и уточняют исследуемый диапазон фактора С N – С 1:

=,

где х u – безразмерное выражение фактора, аналогичное полученному по соотношению

Для расчета коэффициентов уравнения используем формулу:

множители а ju и знаменатель l j берем из приложения.

Число опытов эксперимента может быть четным или нечетным, и, как правило, должно быть больше числа коэффициентов N" уравнения.

Чем больше разность (N – N"), тем с большей точностью можно получить оценки коэффициентов данного уравнения и тем в большей степени эти оценки будут освобождены от влияния случайных неуточненных факторов.

Создание модели - акт необходимый при анализе и синтезе сложных систем, но далеко не конечный. Модель - не цель исследователя, а только инструмент для проведения исследований, инструмент эксперимента. В первых темах мы достаточно полно раскрыли афоризм: "Модель есть объект и средство эксперимента".

Эксперимент должен быть информативен, то есть давать всю нужную информацию, которой следует быть полной, точной, достоверной. Но она должна быть получена приемлемым способом. Это означает, что способ должен удовлетворять экономическим, временным и, возможно, другим ограничениям. Такое противоречие разрешается с помощью рационального (оптимального) планирования эксперимента.

Теория планирования эксперимента сложилась в шестидесятые годы двадцатого века благодаря работам выдающегося английского математика , биолога, статистика Рональда Айлмера Фишера (1890-1962 гг.). Одно из первых отечественных изданий: Федоров В. В. Теория оптимального эксперимента. 1971 г. Несколько позже сложилась теория и практика планирования имитационных экспериментов, элементы которых рассматриваются в настоящей теме.

4.1. Сущность и цели планирования эксперимента

Итак, как мы уже знаем, модель создается для проведения на ней экспериментов. Будем считать, что эксперимент состоит из наблюдений , а каждое наблюдение - из прогонов (реализаций ) модели .

Для организации экспериментов наиболее важно следующее.

Компьютерный эксперимент с имитационной моделью обладает преимуществами перед натурным экспериментом по всем этим позициям.

Что же такое компьютерный (машинный) эксперимент?

Компьютерный эксперимент представляет собой процесс использования модели с целью получения и анализа интересующей исследователя информации о свойствах моделируемой системы.

Эксперимент требует затрат труда и времени и, следовательно, финансовых затрат. Чем больше мы хотим получить информации от эксперимента, тем он дороже.

Средством достижения приемлемого компромисса между максимумом информации и минимумом затрат ресурсов является план эксперимента.

План эксперимента определяет:

  • объем вычислений на компьютере;
  • порядок проведения вычислений на компьютере;
  • способы накопления и статистической обработки результатов моделирования.

Планирование экспериментов имеет следующие цели:

  • сокращение общего времени моделирования при соблюдении требований к точности и достоверности результатов;
  • увеличение информативности каждого наблюдения;
  • создание структурной основы процесса исследования.

Таким образом, план эксперимента на компьютере представляет собой метод получения с помощью эксперимента необходимой информации.

Конечно, можно проводить исследования и по такому плану: исследовать модель во всех возможных режимах, при всех возможных сочетаниях внешних и внутренних параметров , повторять каждый эксперимент десятки тысяч раз - чем больше, тем точнее!

Очевидно, пользы от такой организации эксперимента мало, полученные данные трудно обозреть и проанализировать. Кроме того, большими будут затраты ресурсов, а они всегда ограничены.

Весь комплекс действий по планированию эксперимента разделяют на две самостоятельные функциональные части:

  • стратегическое планирование;
  • тактическое планирование.

Стратегическое планирование - разработка условий проведения эксперимента, определение режимов, обеспечивающих наибольшую информативность эксперимента.

Тактическое планирование обеспечивает достижение заданных точности и достоверности результатов.

4.2. Элементы стратегического планирования экспериментов

Формирование стратегического плана выполняется в так называемом факторном пространстве . Факторное пространство - это множество внешних и внутренних параметров , значения которых исследователь может контролировать в ходе подготовки и проведения эксперимента.

Объектами стратегического планирования являются:

  • выходные переменные (отклики, реакции, экзогенные переменные );
  • входные переменные (факторы, эндогенные переменные );
  • уровни факторов.

Математические методы планирования экспериментов основаны на так называемом кибернетическом представлении процесса проведения эксперимента (рис. 4.1).


Рис. 4.1.

- входные переменные, факторы;

- выходная переменная ( реакция , отклик);

Ошибка, помеха, вызываемая наличием случайных факторов;

Оператор, моделирующий действие реальной системы, определяющий зависимость выходной переменной от факторов

Иначе: - модель процесса, протекающего в системе.

Первой проблемой , решаемой при стратегическом планировании, является выбор отклика (реакции), то есть определение , какие величины нужно измерять во время эксперимента, чтобы получить искомые ответы. Естественно, выбор отклика зависит от цели исследования.

Например, при моделировании информационно-поисковой системы может интересовать исследователя время ответа системы на запрос . Но может интересовать такой показатель как максимальное число обслуженных запросов за интервал времени. А может, то и другое. Измеряемых откликов может быть много: В дальнейшем будем говорить об одном отклике

Второй проблемой стратегического планирования является выбор ( определение ) существенных факторов и их сочетаний, влияющих на работу моделируемого объекта. Факторами могут быть питающие напряжения, температура, влажность, ритмичность поставок комплектующих и многое другое. Обычно число факторов велико и чем меньше мы знакомы с моделируемой системой, тем большее, нам кажется, число их влияет на работу системы. В теории систем приводится так называемый принцип Парето:

  • 20% факторов определяют 80% свойств системы;
  • 80% факторов определяют 20% свойств системы. Следовательно, надо уметь выделять существенные факторы. А

это достигается достаточно глубоким изучением моделируемого объекта и протекающих в нем процессов.

Факторы могут быть количественными и (или) качественными.

Количественные факторы - это те, значения которых числа. Например, интенсивности входных потоков и потоков обслуживания, емкость буфера, число каналов в СМО, доля брака при изготовлении деталей и др.

Качественные факторы - дисциплины обслуживания ( LIFO , FIFO и др.) в СМО, "белая сборка ", "желтая сборка " радиоэлектронной аппаратуры, квалификация персонала и т. п.

Фактор должен быть управляемым. Управляемость фактора - это возможность установки и поддержания значения фактора постоянным или изменяющимся в соответствии с планом эксперимента. Возможны и неуправляемые факторы, например, влияние внешней среды.

К совокупности воздействующих факторов предъявляются два основных требования:

  • совместимость;
  • независимость.

Совместимость факторов означает, что все комбинации значений факторов осуществимы.

Независимость факторов определяет возможность установления значения фактора на любом уровне независимо от уровней других факторов.

В стратегических планах факторы обозначают латинской буквой , где индекс указывает номер (тип) фактора. Встречаются и такие обозначения факторов: и т. д.

Третьей проблемой стратегического планирования является выбор значений каждого фактора, называемых уровнями фактора .

Число уровней может быть два, три и более. Например, если в качестве одного из факторов выступает температура, то уровнями могут быть: 80 o С, 100 o С, 120 o С.

Для удобства и, следовательно, удешевления эксперимента число уровней следует выбирать поменьше, но достаточное для удовлетворения точности и достоверности эксперимента. Минимальное число уровней - два.

С точки зрения удобства планирования эксперимента целесообразно устанавливать одинаковое число уровней у всех факторов. Такое планирование называют симметричным .

Анализ данных эксперимента существенно упрощается, если назначить уровни факторов, равноотстоящие друг от друга. Такой план называется ортогональным . Ортогональность плана обычно достигают так: две крайние точки области изменения фактора выбирают как два уровня, а остальные уровни располагают так, чтобы они делили полученный отрезок на две части.

Например, диапазон питающего напряжения 30…50 В на пять уровней будет разбит так: 30 В, 35 В, 40 В, 45 В, 50 В.

Эксперимент, в котором реализуются все сочетания уровней всех факторов, называется полным факторным экспериментом (ПФЭ).

План ПФЭ предельно информативен, но он может потребовать неприемлемых затрат ресурсов.

Если отвлечься от компьютерной реализации плана эксперимента, то число измерений откликов (реакций) модели при ПФЭ равно:

где - число уровней -го фактора, ; - число факторов эксперимента.

Надёжности и точности в исследовании, предусмотреть нюансы, за которыми сложно уследить при бытовом «спонтанном экспериментировании». Зачастую, чтобы скорректировать план, экспериментаторы проводят так называемое пилотное, или пробное, исследование, которое можно рассматривать как «черновик» будущего научного эксперимента.

Энциклопедичный YouTube

    1 / 5

    Экспериментальная психология

    Центральный композитный план (Планирование эксперимента DOE)

    Социальная психология. Современный фашизм в эксперименте Джонса "Третья волна"

    Психологическое наполнение признаков Аугустинавичюте-Рейнина. Что показал эксперимент (и не только)

    BBC - Он и Она - Секреты отношений. Часть 1

    Субтитры

Основные вопросы, на которые отвечает экспериментальный план

Экспериментальный план создаётся для того, чтобы ответить на основные вопросы о:

Одним из самых важных вопросов, на которые должен ответить экспериментальный план, - определить, в какой последовательности должно происходить изменение рассматриваемых стимулов (независимых переменных), воздействующих на зависимую переменную . Такое воздействие может варьироваться от простой схемы «A 1 -A 2 », где A 1 - первое значение стимула, A 2 - второе значение стимула, до более сложных, таких, как «A 1 -A 2 -A 1 -A 2 », и т. д. Последовательность предъявления стимулов - очень важный вопрос, напрямую касающийся соблюдения валидности исследования: к примеру, если постоянно предъявлять человеку один и тот же стимул, он может стать менее восприимчив к нему.

Этапы планирования

Планирование включает в себя два этапа :

  1. Содержательное планирование эксперимента:
    • Определение ряда теоретических и экспериментальных положений, образующих теоретическую основу исследования.
    • Формулировка теоретических и экспериментальных гипотез исследования.
    • Выбор необходимого метода эксперимента.
    • Решение вопроса выборки испытуемых:
      • Определение состава выборки.
      • Определение объёма выборки.
      • Определение способа формирования выборки.
  2. Формальное планирование эксперимента:
    • Достижение возможности сравнения результатов.
    • Достижение возможности обсуждения полученных данных.
    • Обеспечение экономичного проведения исследования.

Главной целью формального планирования считается исключение максимально возможного числа причин искажения результатов.

Виды планов

Простые планы

Простые планы , или однофакторные, предусматривают изучение влияния на зависимую переменную только одной независимой переменной. Преимущество таких планов состоит в их эффективности при установлении влияния независимой переменной, а также в лёгкости анализа и интерпретации результатов. Недостаток заключается в невозможности сделать вывод о функциональной зависимости между независимой и зависимой переменными.

Опыты с воспроизводимыми условиями

Планы для многоуровневых экспериментов

Если в экспериментах используется одна независимая переменная, ситуация, когда изучаются только два её значения, считается скорее исключением, чем правилом. В большинстве однофакторных исследований три или более значений независимой переменной, - такие планы часто называют однофакторными многоуровневыми . Такие планы могут использоваться как для исследования нелинейных эффектов (то есть случаев, когда независимая переменная принимает более двух значений), так и для проверки альтернативных гипотез . Преимущество таких планов - в возможности определить вид функциональной зависимости между независимой и зависимой переменными. Недостаток, однако же, заключается в больших временных затратах, а также в необходимости привлечь больше участников.

Факторные планы

Факторные планы подразумевают использование более чем одной независимой переменной. Таких переменных, или факторов , может быть сколько угодно, однако обычно ограничиваются использованием двух, трёх, реже - четырёх .

Факторные планы описываются с помощью системы нумерации, показывающей количество независимых переменных и количество значений (уровней), принимаемых каждой переменной. Например, факторный план 2х3 («два на три») имеет две независимые переменные (факторы), первая из которых принимает два значения («2»), а вторая - три значения («3»); факторный план 3х4х5 имеет соответственно три независимые переменные, принимающие «3», «4» и «5» значений соответственно .

В эксперименте, проводимом по факторному плану 2х2, допустим, один фактор, A, может принимать два значения - A 1 и A 2 , а другой фактор, B, может принимать значения B 1 и B 2 . В течение эксперимента согласно плану 2х2 должно быть проведено четыре опыта:

  1. A 1 B 1
  2. A 1 B 2
  3. A 2 B 1
  4. A 2 B 2

Порядок следования опытов может быть различным в зависимости от целесообразности, определяемой задачами и условиями каждого конкретного эксперимента.

Квазиэкспериментальные планы

Квазиэкспериментальные планы - планы для экспериментов, в которых вследствие неполного контроля за переменными нельзя сделать выводы о существовании причинно-следственной связи . Понятие квазиэкспериментального плана было введено Кэмпбеллом и Стэнли в работе «Experimental and quasi-experimental designs for research» (Cambell, D. T. & Stanley, J. C., ). Это делалось с целью преодоления некоторых проблем, встававших перед психологами, которые желали провести исследование в менее строгой обстановке, чем лабораторная . Квазиэкспериментальные планы часто применяются в прикладной психологии .

Виды квазиэксперементальных планов:

1. Планы эксперимента для неэквивалентных групп

2. Планы дискретных временных серий.

Типы:

1. Эксперимент по плану временных серий

2. План серий временных выборок

3. План серий эквивалентных воздействий

4. План с неэквивалентной контрольной группой

5. Сбалансированные планы.

Планы ex post facto

Исследования, в которых сбор и анализ данных производится после того, как событие уже свершилось, называемые исследованиями ex post facto , многие специалисты относят к квазиэкспериментальным . Такие исследования часто осуществляются в социологии, педагогике , клинической психологии и нейропсихологии . Суть исследования ex post facto состоит в том, что экспериментатор сам не воздействует на испытуемых: в качестве воздействия выступает некоторое реальное событие из их жизни.

В нейропсихологии, к примеру, долгое время (и даже сегодня) исследования основывались на парадигме локализационизма, которая выражается в подходе «локус - функция» и утверждает, что поражения определённых структур позволяют выявить локализацию психических функций - конкретный материальный субстрат , в котором они «находятся», в мозге [см. А. Р. Лурия, «Поражения мозга и мозговая локализация высших функций» ; подобные исследования можно отнести к исследованиям ex post facto .

При планировании исследования ex post facto имитируется схема строгого эксперимента с уравниванием или рандомизацией групп и тестированием после воздействия .

Планы экспериментов с малым N

Планы с малым N также называют «планами с одним субъектом », так как индивидуально рассматривается поведение каждого испытуемого. Одной из главных причин использования экспериментов с малым N считается невозможность в некоторых случаях применить результаты, полученные из обобщений на больших группах людей, ни к одному из участников индивидуально (что, таким образом, приводит к нарушению индивидуальной валидности) .

Корреляционное исследование - исследование, проводимое для подтверждения или опровержения гипотезы о статистической связи (корреляции) между несколькими (двумя или более) переменными. От квазиэкспериментального план такого исследования отличается тем, что в нём отсутствует управляемое воздействие на объект исследования .

В корреляционном исследовании учёный выдвигает гипотезу о наличии статистической связи между несколькими психическими свойствами индивида или между определёнными внешними уровнями и психическими состояниями, при этом предположения о причинной зависимости не обсуждаются . Испытуемые должны быть в эквивалентных неизменных условиях. В общем виде план такого исследования можно описать как PxO («испытуемые» x «измерения») .

Виды корреляционных исследований

  • Сравнение двух групп
  • Одномерное исследование
  • Корреляционное исследование попарно эквивалентных групп
  • Многомерное корреляционное исследование
  • Структурное корреляционное исследование
  • Лонгитюдное корреляционное исследование *

* Лонгитюдные исследования считаются промежуточным вариантом между квазиэкспериментом и корреляционным исследованием.

Планирование эксперимента - продукт нашего времени, однако истоки его теряются в глубине веков.

Истоки планирования эксперимента уходят в глубокую древность и связаны с числовой мистикой, пророчествами и суевериями.

Это собственно не планирование физического эксперимента, а планирование числового эксперимента, т.е. расположение чисел так, чтобы выполнялись некоторые строгие условия, например, на равенство сумм по строкам, столбцам и диагоналям квадратной таблицы, клеточки которой заполнены числами натурального ряда.

Такие условия выполняются в магических квадратах, которым, по-видимому, принадлежит первенство в планировании эксперимента.

Согласно одной легенде примерно в 2200 г. до н.э. китайский император Ю выполнял мистические вычисления с помощью магического квадрата, который был изображен на панцире божественной черепахи.

Квадрат императора Ю

Клетки этого квадрата заполнены числами от 1 до 9, и суммы чисел по строкам, столбцам и главным диагоналям равны 15.

В 1514 г. немецкий художник Альбрехт Дюрер изобразил магический квадрат в правом углу своей знаменитой гравюры-аллегории «Меланхолия». Два числа в нижнем горизонтальном ряду A5 и 14) составляют год создания гравюры. В этом состояло своеобразное «приложение» магического квадрата.

Квадрат Дюрера

В течение нескольких веков построение магических квадратов занимало умы индийских, арабских, немецких, французских математиков.

В настоящее время магические квадраты используются при планировании эксперимента в условиях линейного дрейфа, при планировании экономических расчетов и составлении рационов питания, в теории кодирования и т.д.

Построение магических квадратов является задачей комбинаторного анализа, основы которого в его современном понимании заложены Г. Лейбницем. Он не только рассмотрел и решил основные комбинаторные задачи, но и указал на большое практическое применение комбинаторного анализа: к кодированию и декодированию, к играм и статистике, к логике изобретений и логике геометрии, к военному искусству, грамматике, медицине, юриспруденции, технологии и к комбинации наблюдений. Последняя область применения наиболее близка к планированию эксперимента.

Одной из комбинаторных задач, имеющей прямое отношение к планированию эксперимента, занимался известный петербургский математик Л. Эйлер. В 1779 г. он предложил задачу о 36 офицерах как некоторый математический курьез.

Он поставил вопрос, можно ли выбрать 36 офицеров 6 рангов из 6 полков по одному офицеру каждого ранга от каждого полка и расположить их в каре так, чтобы в каждом ряду и в каждой шеренге было бы по одному офицеру каждого ранга и по одному от каждого полка. Задача эквивалентна построению парных ортогональных 6x6 квадратов. Оказалось, что эту задачу решить невозможно. Эйлер высказал предположение, что не существует пары ортогональных квадратов порядка п=1 (mod 4).

Задачей Эйлера, в частности, и латинскими квадратами вообще занимались впоследствии многие математики, однако почти никто из них не задумывался над практическим применением латинских квадратов.

В настоящее время латинские квадраты являются одним из наиболее популярных способов ограничения на рандомизацию при наличии источников неоднородностей дискретного типа в планировании эксперимента. Группировка элементов латинского квадрата, благодаря своим свойствам (каждый элемент появляется один и только один раз в каждой строке и в каждом столбце квадрата), позволяет защитить главные эффекты от влияния источника неоднородностей. Широко используются латинские квадраты и как средство сокращения перебора в комбинаторных задачах.

Возникновение современных статистических методов планирования эксперимента связано с именем Р. Фишера.

С 1918 г. он начал свою известную серию работ на Рочемстедской агробиологической станции в Англии. В 1935 г. появилась его монография «Design of Experiments», давшая название всему направлению.

Среди методов планирования первым был дисперсионный анализ (кстати, Фишеру принадлежит и термин «дисперсия»). Фишер создал основы этого метода, описав полные классификации дисперсионного анализа (однофакторный и многофакторный эксперименты) и неполные классификации дисперсионного анализа без ограничения и с ограничением на рандомизацию. При этом он широко использовал латинские квадраты и блок-схемы. Вместе с Ф. Йетсом он описал их статистические свойства. В 1942 г. А. Кишен рассмотрел планирование по латинским кубам, которое явилось дальнейшим развитием теории латинских квадратов.

Затем Р. Фишер независимо опубликовал сведения об ортогональных гипер-греко-латинских кубах и гипер-кубах. Вскоре после этого 1946-1947 гг.) Р. Рао рассмотрел их комбинаторные свойства. Дальнейшему развитию теории латинских квадратов посвящены работы X. Манна A947-1950 гг.).

Исследования Р. Фишера, проводившиеся в связи с работами по агробиологии, знаменуют начало первого этапа развития методов планирования эксперимента. Фишер разработал метод факторного планирования. Йегс предложил для этого метода простую вычислительную схему. Факторное планирование получило широкое распространение. Особенностью полного факторного эксперимента является необходимость ставить сразу большое число опытов.

В 1945 г. Д. Финни ввел дробные реплики от факторного эксперимента. Это позволило резко сократить число опытов и открыло дорогу техническим приложениям планирования. Другая возможность сокращения необходимого числа опытов была показана в 1946 г. Р. Плакеттом и Д. Берманом, которые ввели насыщенные факторные планы.

В 1951 г. работой американских ученых Дж. Бокса и К. Уилсона начался новый этап развития планирования эксперимента.

Эта работа подытожила предыдущие. В ней ясно сформулирована и доведена до практических рекомендаций идея последовательного экспериментального определения оптимальных условий проведения процессов с использованием оценки коэффициентов степенных разложений методом наименьших квадратов, движения по градиенту и отыскания интерполяционного полинома (степенного ряда) в области экстремума функции отклика («почти стационарной» области).

В 1954-1955 гг. Дж. Бокс, а затем Дж. Бокс и П. Юл показали, что планирование эксперимента можно использовать при исследовании физико-химических механизмов процессов, если априори высказаны одна или несколько возможных гипотез. Здесь планирование эксперимента пересекалось с исследованиями по химической кинетике. Интересно отметить, что кинетику можно рассматривать как метод описания процесса с помощью дифференциальных уравнений, традиции которого восходят к И. Ньютону. Описание процесса дифференциальными уравнениями, называемое детерминистическим, нередко противопоставляется статистическим моделям.

Бокс и Дж. Хантер сформулировали принцип ротатабельности для описания «почти стационарной» области, развивающейся в настоящее время в важную ветвь теории планирования эксперимента. В той же работе показана возможность планирования с разбиением на ортогональные блоки, указанная ранее независимо де Бауном.

Дальнейшим развитием этой идеи было планирование, ортогональное к неконтролируемому временному дрейфу, которое следует рассматривать как важное открытие в экспериментальной технике - значительное увеличение возможностей экспериментатора.

Похожие статьи

© 2024 choosevoice.ru. Мой бизнес. Бухгалтерский учет. Истории успеха. Идеи. Калькуляторы. Журнал.